
SOLUTIONS FOR COMPLEX PROJECTS

Human Health and Ecological Risk Assessment

Our Lady of Lourdes Primary School, Tarro

Fire and Rescue NSW

SOLUTIONS FOR COMPLEX PROJECTS

We help solve complex problems for projects

We believe that well-planned and targeted advice can help shape a project that is not only better developed, but is delivered more effectively, with greater acceptance and positive outcomes.

Nation Partners isn't your regular consulting firm. A certified B Corporation, we attract and develop the brightest thinkers and take an active part in shaping the world.

With expertise in projects in the government, transport, water, property and urban development sectors, we provide a suite of services aptly tailored to each client and project at hand.

Document title

Human Health and Ecological Risk Assessment - Tarro

Version

1.0

Date October 2020

Prepared by Gemma Williams

Approved by Luke Clements

File name NP19039 Tarro HHERA

Nation Partners Pty Ltd ABN 96 166 861 892

Level 3, The Alley, 75-77 Flinders Lane Melbourne Vic 3000

Suite 108, 50 Holt St Surry Hills NSW 2010

ã 1300 876 976
 info@nationpartners.com.au

 ¬ nationpartners.com.au

COPYRIGHT: The concepts and information contained in this document are the property of Nation Partners Pty Ltd. Use or copying of this document in whole or in part without the written permission of Nation Partners constitutes an infringement of copyright

Executive Summary

▼

Nation Partners Pty Ltd (Nation Partners) has been engaged by Fire and Rescue NSW (FRNSW) to conduct a Human Health and Ecological Risk Assessment (HHERA) to better understand the potential for risks associated with the presence of per- and polyfluoroalkyl substances (PFAS) at Our Lady of Lourdes (OLOL) Primary School, Tarro, New South Wales (NSW) (the site).

Due to the historical use of legacy aqueous film forming foams (AFFF) at Tarro Fire Station, located adjacent to the site, FRNSW initiated a detailed site investigation (DSI) to assess the nature and extent of PFAS contamination present in an area that was formerly used for fire training and has subsequently become part of OLOL Primary School. The objective of the HHERA was to assess the potential for unacceptable risks to potential future on-site receptors and current off-site receptors associated with the potential exposure to PFAS present in environmental media as a result of historical fire training activities undertaken at the site. Consistent with the *Contaminated Land Management Act 1997* (NSW), this HHERA has been conducted based on the framework outlined in the *National Environment Protection (Assessment of Site Contamination) Measure 1999* (as amended 2013) (NEPC, 2013), and other relevant Australian guidance.

The first phase of the detailed environmental investigation, the Sampling, Analysis and Quality Plan (SAQP) included the preliminary site investigation (PSI) components. The SAQP provided a review of historical contamination sources and activities at the site and the site's environmental setting. The SAQP identified areas of potential interest and data gaps in the understanding of the preliminary conceptual site model (CSM) for further environmental investigation in the DSI. The DSI was completed by Nation Partners and reported in December 2019. Sampling and analysis of various media was completed in the investigation area to assess the nature and extent of PFAS contamination and refine the CSM. The CSM identified contamination sources, and pathways from sources to potential receptors (people and the environment). The CSM also indicated that a number of exposure pathways are incomplete (i.e. contamination sources are not connected to people or the environment), particularly in relation to the exposure risks to people using OLOL Primary School from surface and near surface soils, surface water, groundwater, tanked rainwater and currently grown produce. Pathways associated with the risk to human receptors from multiple exposure routes, including proposed expanded produce use on-site and potential exposures associated with off-site migration, required further assessment. On this basis, the DSI recommended that this HHERA be undertaken.

As part of this HHERA, additional soil, groundwater, sediment and surface water sampling was completed by Nation Partners (see **Appendix A**). In addition, in preparing the HHERA, Nation Partners has relied upon the data and information presented in the following documents:

» Nation Partners, 2019a. Detailed Site Investigation Report – PFAS Investigation (DSI). December 2019.

» Nation Partners, 2019b. Addendum 1 to Detailed Site Investigation Report – PFAS Investigation. December 2019.

Exposure Assessment:

Based on the CSM, the following receptor groups have been considered as part of the HHERA:

- » Adults and children that work at or attend OLOL Primary School;
- » Residents (adults and children) that live on properties adjacent to the site;
- » Recreational receptors that use Tarro Reserve for recreational activities; and
- » Ecological receptors that inhabit or forage within Tarro Reserve.

Exposure pathways that have been considered in this HHERA for the above listed receptors have been summarised in **Table E1** below.

Table E1: Summary of Exposure Pathways Considered in the HHERA
--

Table E1: Summary of Exposure Pathways Considered in the HHERA				
Exposure Pathway	Complete (Yes/No)	Comments		
Adults and children that work at or attend OLOL Primary School				
Incidental ingestion of soil and Inhalation of dust generated from on-site soils	Yes	The DSI identified that exposure to PFAS impacts in soil as a result of incidental ingestion and dust inhalation for adults and children is low and acceptable. However, for the purpose of understanding the cumulative exposures to all exposure pathways on-site this exposure pathway has been considered to be complete for these receptors.		
Future Exposure Pathway – Ingestion of home grown produce	Yes	OLOL have indicated that there is a potential for additional garden beds to be constructed at the site for the purpose of growing fruits and vegetables for human consumption. This future exposure pathway has been assessed to inform the design process.		
Future Exposure Pathway – ingestion of chicken eggs collected from the site	Yes	OLOL have indicated that there is a potential for chickens to be housed at the site for the purpose of collecting eggs for human consumption. This exposure pathway has been assessed to inform the decision process with regard to chickens at the site.		
Residents (adults and children) t	hat live on p	roperties adjacent to the site		
Incidental ingestion of soil and Inhalation of dust generated from on-site soils	Yes	Sampling of surface soils along the nature strip indicates that there is potential for PFAS to be present in surface soils in residential properties. Although the reported concentrations are below public open space screening criteria, this exposure pathway has been considered to enable assessment of cumulative exposures from multiple exposure pathways.		
Ingestion of home grown produce (fruits and vegetables)	Yes	During the water use survey some participants indicated that they grow fruits and vegetables in their gardens. Due to the limited nature of off-site soil samples this exposure pathway has been assessed to evaluate the potential for risks to these receptors.		
Ingestion of chicken eggs from chickens kept in residential gardens	No	This exposure pathway was not identified to be complete for off-site residents near the site under current land use conditions.		
Recreational receptors that use Tarro Reserve for recreational activities				
Incidental ingestion of surface water and sediments	Yes	There is potential for recreational users of Tarro Reserve to enter the waterway for the purposes of primary contact recreation (swimming). However, the water use survey did not indicate that local residents are utilising Tarro Reserve for the purpose of primary contact recreation.		

Exposure Pathway	Complete (Yes/No)	Comments
Ingestion of aquatic biota from Tarro Reserve	No	Local residents indicated that fishing was not undertaken within Tarro Reserve due to proximity to popular fishing waterways such as the Hunter River and Nelson Bay.
Ecological receptors that inhabit or forage within Tarro Reserve		
Ingestion of soil/sediment during foraging activities	Yes	The presence of PFAS in stormwater discharging to Tarro Reserve, and in surface water bodies in the
Ingestion of surface water within Tarro Reserve	Yes	reserve and adjacent wetland, indicates that there is potential for ecological receptors to be exposed as a result of ingestion of anying mental modia and as a
Ingestion of aquatic and	Yes	result of ingestion of environmental media and as a result of the ingestion of PFAS accumulated within biota.

Conclusions:

terrestrial biota in Tarro Reserve

On the basis of the available data and the assessment presented herein, and with consideration of identified uncertainties and data limitations the following conclusions are presented:

- » Risks of exposure to PFAS to adults and children that attend OLOL Primary School, and who may consume home grown produce grown on the site (assumed to consist of up to 10% of their diet of fruits and vegetables) have been estimated to be low and acceptable in accordance with nationally published guidance;
- » There is potential for unacceptable risks of exposure to PFAS under future land use conditions where chickens are housed in the DSI investigation area (Figure F2) at the site for the purposes of laying eggs for human consumption;
- » Risks of exposure to PFAS to residents (adults and children) that inhabit the properties adjacent to the site, and who consume home grown produce (fruits and vegetables) from their gardens, have been estimated to be low and acceptable in accordance with nationally published guidance;
- » Risks of exposure to PFAS to recreational receptors that use Tarro Reserve for swimming purposes were estimated to be low and acceptable in accordance with nationally published guidance; and
- » Risks of exposure to PFAS to ecological receptors that may forage at the site and in surrounding areas, including within Tarro Reserve, are potentially unacceptable based on comparison of reported concentrations in soil and surface water with Tier 1 screening values. However, given the highly modified nature of the on-site and off-site environments it is considered likely that ecological receptors consist primarily of common urban species that are known to be less sensitive to environmental impacts compared to native species that inhabit less disturbed/modified environments.

Recommendations:

Given the above conclusions the following recommendations are provided:

» Given the potential for PFAS uptake to occur into chicken eggs, it is recommended that chickens are not housed within the investigation area of the site. If chickens are housed on-site in the future, it is recommended that soils in the proposed location be tested to confirm that consumption of chicken eggs would not increase the potential for PFAS exposures.

- » As a precautionary approach it is recommend that wherever possible vegetable gardens should be within raised garden beds. It is noted that this is consistent with the current approach to produce garden configurations at the site.
- » It is recommended that wherever possible, efforts should be made to minimise the potential for PFAS to leach from soils within the source area of the site into groundwater and surface water to minimise the potential for transport of PFAS away from the site.
- » An ongoing monitoring program should be implemented to measure on-site and off-site surface water and groundwater concentrations over time. This will allow an assessment of changes in the potential for PFAS transport and will inform potential future risk management decisions.

Acronyms and Abbreviations

▼

6:2 FTSA	6:2 Fluorotelomer Sulfonic Acid
AFFF	Aqueous Film Forming Foam
ANZG	Australian and New Zealand Governments
ASC NEPM	National Environment Protection (Assessment of Site Contamination) Measure
ATSDR	Agency for Toxic Substance and Disease Registry
CBD	Central Business District
CoPC	Contaminant of Potential Concern
CRC CARE	Cooperative Research Council for Contamination Assessment and Remediation of the Environment
CSM	Conceptual Site Model
DQI	Data Quality Indicator
DQO	Data Quality Objectives
DSI	Detailed Site Investigation
ECCC	Environment and Climate Change Canada
EFSA	European Food Safety Authority
enHealth	Environmental Health Standing Committee, Australian Health Protection Principal Committee
EPA	Environment Protection Authority
EPC	Exposure Point Concentration
EQL	Estimated Quantification Limit (also known as laboratory limit of reporting)
ERA	Ecological Risk Assessment
FRNSW	Fire and Rescue NSW
FSANZ	Food Standards Australia New Zealand
FTS	Fluorotelomer Sulfonic Acids
GDE	Groundwater Dependent Ecosystem
HBGV	Health Based Guideline Value
HED	Human Equvalent Dose
HEPA	Heads of Environment Protection Authority
HHERA	Human Health and Ecological Risk Assessment
HHRA	Human Health Risk Assessment
н	Hazard Index
HQ	Hazard Quotient

SOLUTIONS FOR COMPLEX PROJECTS

IDE	Inflow Dependent Ecosystem
km	Kilometres
L	Litres
m	Metre
m bgl	Metres Below Ground Level
m ²	Square Metres
mg/kg	Milligram per kilogram
mg/m ³	Milligrams per cubic metre
MRL	Minimal Risk Level
N-EtFOSA	N-ethyl perfluorooctane sulfonamide
N-EtFOSAA	N-ethyl perfluorooctane sulfonamidoacetic acid
N-EtFOSE	N-ethyl perfluorooctane sulfonamidoethanol
N-MeFOSA	N-methyl perfluorooctane sulfonamide
N-MeFOSAA	N-methyl perfluorooctane sulfonamidoacetic acid
N-MeFOSE	N-methyl perfluorooctane sulfonamidoethanol
NEMP	National Environment Management Plan
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
NHMRC	National Health and Medical Research Council
NOAEL	No Observable Adverse Effects Level
NSW	New South Wales
OEH	Office of Environment and Heritage
OLOL	Our Lady of Lourdes
PFAA	Perfluoroalkyl Acid
PFAS	Per- and Poly-Fluoroalkyl Substances
PFAS NEMP	PFAS National Environmental Management Plan
PFBA	Perfluorobutanoic Acid
PFBS	Perfluorobutane Sulfonic Acid
PFCA	Perfluoroalkane Carboxylic Acids
PFDA	Perfluorodecanoic Acid
PFDoDA	Perfluorododecanoic Acid
PFDS	Perfluorodecane Sulfonic Acid
PFHpA	Perfluoroheptanoic Acid
PFHpS	Perfluoroheptane Sulfonic Acid
PFHxA	Perfluorohexanoic Acid

SOLUTIONS FOR COMPLEX PROJECTS

PFHxS	Perfluorohexane Sulfonate
PFHxS	Perfluorohexane Sulfonate
PFNA	Perfluorononanoic Acid
PFOA	Perfluorooctanoic Acid
PFOS	Perfluorooctane Sulfonate
PFOSA	Perfluorooctane Sulfonamide
PFPeA	Perfluoropentanoic Acid
PFPeS	Perfluoropentane Sulfonic Acid
PFSA	Perfluoroalkane Sulfonic Acids
PFTeDA	Perfluorotetradecanoic Acid
PFTriDA	Perfluorotridecanoic Acid
PFUnDA	Perfluoroundecanoic Acid
PM	Particulate Matter
POD	Point of Departure
QA/QC	Quality Assurance/Quality Control
RfC	Reference Concentration
RfD	Reference Dose
SPR	Source-Pathway-Receptor
SW	Surface Water Sample
SWL	Standing Water Level
TDI	Tolerable Daily Intake
UF	Uncertainty Factor
UKCOT	United Kingdom Committee on Toxicity
USEPA	United States Environment Protection Agency
WHO	World Health Organisation
µg/kg	Micrograms per kilogram
µg/L	Micrograms per litre

Table of Contents

Exec	cutive Summary	2
Acro	nyms and Abbreviations	6
1.	Introduction	12
1.1	Background	12
1.2	Objectives	13
1.3 1.3.1 1.3.2		<mark>13</mark> 13 16
1.4	Scope of Works	18
2.	Site Identification	21
2.1	Site Details	21
2.2	Historical, Current, and Proposed Land Uses	21
2.3	Surrounding Land Uses	22
2.4	Previous Investigations	22
3.	Issues Identification	24
3.1	Key Stakeholders	24
3.2	Risk Management Decisions	24
4.	Data Evaluation	26
4.1	Data Used in the Risk Assessment	26
4.2	Water use survey	26
4.3	Data Quantity	27
4.4	Data Quality	27
4.5	Data Limitations	28
4.6	Selection of Contaminants of Potential Concern	29
5.	Conceptual Site Model	35
5.1 5.1.1 5.1.2 5.1.3 5.1.4	Soils, Geology and Hydrogeology Registered Groundwater Bores	35 35 35 36 36
<mark>5.2</mark> 5.2.1	Nature and Extent of Contamination Soil	<mark>36</mark> 36

5.2.2 5.2.3 5.2.4	Surface Water Biota	37 37 38
5.2.5		38
5.3	Contaminant Transport Mechanisms	39
5.4	Receptors	40
5.5	Potential Exposure Pathways	40
5.6	Conceptual Site Model Summary	42
6.	Toxicity Assessment	44
6.1	Hazard Identification	44
6.2 6.2.1 6.2.1 6.2.2 6.2.2 6.2.2 6.2.3	.1 Human Health Risk Assessment .2 Ecological Risk Assessment Human Health Tolerable Daily Intakes 2.1 Background Exposure	46 46 47 48 51 51
7.	Human Health Risk Assessment	52
7.1 7.1.1 7.1.2 7.1.3	Exposure Point Concentration	<mark>52</mark> 52 58 60
7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5	Risk Estimate Sensitivity Analysis Risk Evaluation	66 66 67 69 72 74
8.	Ecological Risk Assessment	75
8.1	Ecological Site Setting	75
8.2	Exposure Assessment	76
8.3	Tier 1 Screening Assessment	76
8.4	Qualitative Risk Evaluation	77
8.5	Ecological Risk Characterisation	79
9.	Conclusions and Recommendations	83
10.	References	84

Figures

SOLUTIONS FOR COMPLEX PROJECTS

Tables

- **Appendices**
- Appendix A DSI Addendum 2
- Appendix B HHRA Risk Model
- Appendix C Protected Matter Search Tool Output

1. Introduction

▼

Nation Partners Pty Ltd (Nation Partners) has been engaged by Fire and Rescue NSW (FRNSW) to conduct a Human Health and Ecological Risk Assessment (HHERA) to better understand the potential for risks associated with the presence of per- and polyfluoroalkyl substances (PFAS) at Our Lady of Lourdes (OLOL) Primary School, Tarro, New South Wales (NSW) (the site). The site's location is shown on the attached **Figure F1**.

1.1 Background

Aqueous Film Forming Foams (AFFF) are 'Class B' firefighting foams used to prevent or extinguish flammable liquid fires. AFFF forms a barrier that inhibits oxygen from feeding the fire, whilst limiting volatilisation of flammable vapours from fuels. Historically (from the 1970s), FRNSW used AFFF that contained perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and perfluorooctanoic acid (PFOA) (herein referred to as legacy AFFF).

In 2007, FRNSW ceased using legacy AFFF at its fire stations and training sites. However, the chemical characteristics of PFAS make them highly resistant to degradation. Consequently, PFAS compounds may persist in environmental media such as soil, sediments, groundwater, surface water and biota for many years after the release(s) occurred. PFAS are highly water soluble and leach from solid materials (such as soil, sediment or concrete) into surface water or groundwater and can be dispersed widely from source areas. PFAS also have the potential to bioaccumulate in plants and animals.

Due to the historical use of legacy AFFF at Tarro Fire Station, located adjacent to the site, FRNSW initiated an investigation to assess the nature and extent of PFAS contamination present in an area that was formerly used for fire training and has subsequently become part of OLOL Primary School. This area is herein referred to as the 'investigation area' and is shown in the attached **Figure F2**. The investigation is part of a broader program being undertaken by FRNSW across NSW to manage this legacy issue (see https://www.fire.nsw.gov.au/page.php?id=9170).

A detailed site investigation (DSI) was completed by Nation Partners and reported in December 2019. The DSI focused on the investigation area where preliminary investigations indicated there was potential for historical contamination from FRNSW training activities. Sampling and analysis of various media was completed in the investigation area to assess the nature and extent of PFAS contamination and prepare a conceptual site model (CSM). The CSM identified contamination sources, and pathways from sources to potential receptors (people and the environment). The CSM also indicated that a number of exposure pathways are incomplete (i.e. contamination sources are not connected to people or the environment), particularly in relation to the exposure risks to people using OLOL Primary School from surface and near surface soils, surface water, groundwater, tanked rainwater and currently grown produce. Pathways associated with the risk to human receptors from multiple exposure routes, including proposed expanded produce use on-site and potential exposures associated with off-site migration, required further assessment.

1.2 Objectives

The objective of the HHERA was to assess the potential for unacceptable risks to current off-site receptors associated with the potential exposure to PFAS present in environmental media as a result of historical fire training activities undertaken at the site.

It is noted that risks to current users of the site (teachers and children) were assessed as part of the DSI and determined to be low and acceptable based on the current land use setting. However, the HHERA has also assessed the potential for unacceptable risks that may arise from the future land use settings proposed for the site. The proposed future uses assessed in the HHERA are construction of additional garden beds for home grown produce and keeping chickens for egg consumption purposes. The HHERA has assumed that home grown produce may be grown directly in soils currently present in the investigation area, and chickens may be kept in the investigation area.

No consideration of risks to intrusive maintenance workers both on-site and off-site has been included herein as reported PFAS concentrations in soils at the site are an order of magnitude below the adopted commercial/industrial land use screening criteria. Refer to the DSI report available at https://www.fire.nsw.gov.au/page.php?id=9322 for further details (Nation Partners, 2019a).

1.3 Risk Assessment Framework and Methodology

This HHERA has been prepared in consultation with various stakeholders including the site owners, site users and the NSW Government in accordance with relevant nationally adopted guidance.

Consistent with the *Contaminated Land Management Act, 1997* (NSW), this HHERA has been conducted based on the framework outlined in the *National Environment Protection (Assessment of Site Contamination) Measure 1999* (as amended 2013) (NEPC, 2013).

1.3.1 Human Health Risk Assessment

The human health risk assessment (HHRA) component of this risk assessment has been conducted in accordance with the framework and methodology specified in the following nationally adopted guidance documents:

- » Environmental Health Risk Assessment, Guidelines for Assessing Human Health Risks from Environmental Hazards. Department of Health and Aging, 2012 Update (enHealth, 2012);
- » National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) (NEPC, 2013), specifically:
 - Schedule B4, Guideline on Site-specific Human Health Risk Assessment Methodology;
 - -Schedule B7 Guideline on Derivation of Health-Based Investigation Levels; and
- » PFAS National Environment Management Plan 2018 (NEMP). Heads of EPA (HEPA) (HEPA, 2018).

In accordance with the above documents, the HHRA process comprises the following elements.

- » Issue Identification, which includes identification of the objectives of the risk assessment, the problems that the risk assessment needs to address and the risk management decisions that need to be made based on the HHRA. A key component of this stage is development of preliminary conceptual model describing the sources, receptors and exposure pathways that will be evaluated (Section 3).
- » **Data Collection and Evaluation**, which includes review of available data and information, and identification of the contaminants of potential concern (CoPC) requiring detailed quantitative consideration in the risk assessment. CoPC are usually selected for detailed assessment based on comparison to

published health-based guidance values which are based on conservative exposure assumptions and designed to be protective of most exposed populations. These are commonly referred to as 'Tier 1' screening levels (**Sections 4** and **Appendix A**).

- » **Toxicity Assessment**, which includes evaluation of both qualitative and quantitative information about the toxicity of identified CoPC, in order to describe the nature and incidence of adverse health effects which could occur in humans at different exposure levels. (**Section 6**).
- » **Exposure Assessment**, which includes identification of exposed human populations (receptors) and the pathways via which they may be exposed to CoPC and derivation of quantitative estimates of exposure point concentrations and contaminant intakes for each pathway (**Sections 5** and **Section 7**)
- » **Risk Characterisation**, which involves comparison of estimated exposure levels to relevant toxicity (doseresponse) criteria to estimate the potential incidence and nature of adverse health effects to human receptors. The risk characterisation stage also includes interpretation of risk estimates in the context of the uncertainties and assumptions of the risk assessment process (**Section 7.2**).

In accordance with the above listed documents, the HHRA process has included the elements as shown in **Figure 1** below.

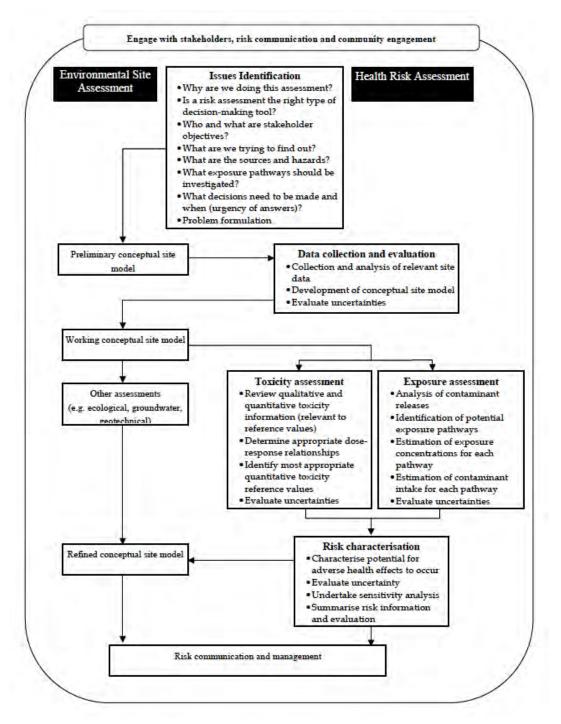


Figure 1: Risk Assessment Framework for Contaminated Sites (source: ASC NEPM Schedule B4)

It is noted that there is potential for human receptors to be exposed to multiple PFAS during the exposure scenarios assessed both on- and off-site. Consideration of the potential risks associated with cumulative exposures to PFAS has been discussed in **Section 4.6** and **Section 7.2**.

1.3.2 Ecological Risk Assessment

The ecological risk assessment (ERA) component of the HHERA was undertaken with consideration of the following Australian guidance documents:

- » National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) (NEPC, 2013), specifically:
- -Schedule B5, Guideline on Ecological Risk Assessment; and
- » ANZG 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia. Available at www.waterquality.gov.au/anz-guidelines.

Whilst the NEPM is generally focused on assessment of risk to terrestrial ecological systems due to soil contamination, the guidance provided does provide a clear overview of the ERA process which is applicable to assessment of both terrestrial and aquatic ecosystems. The framework provided within the NEPM indicates that an ERA should consist of the following basic components.

- » **Problem identification** scoping phase to establish objectives and identify relevant data for the assessment (Section 3).
- » **Receptor identification** identifies species, communities and ecosystem processes that require protection and considers the level of protection that should be applied (**Section 5.4**).
- » Exposure assessment characterises the potential exposure pathways, exposure duration, exposure concentrations and intakes (Section 5 and Section 8.2).
- » **Toxicity assessment** identification of appropriate toxicity values for the CoPC identified (**Sections 6.1** and **Section 8.3**).
- » Risk characterisation considers the calculated intakes relative to identified toxicity values to assess whether a risk may be posed to the identified receptors (Section 8.4 and Section 8.5).

Figure 2 below illustrates the purpose and key activities associated with the ERA and how each of these tasks fits into the overall assessment of risks.

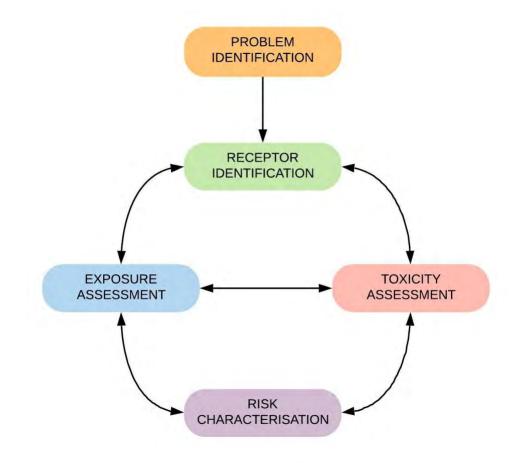


Figure 2: Ecological Risk Assessment Framework (source: ASC NEPM Schedule B5)

As defined in Schedule B5a (NEPC, 2013) both Preliminary and Definitive ERAs consist of the same five basic components of problem identification, receptor identification, toxicity assessment, exposure assessment and risk characterisation. A Preliminary ERA is generally conducted using conservative assumptions that favour protecting the environment. Thus, if a Preliminary ERA indicates the site faces a low risk from the contaminants, then there can be confidence that this is the case.

A Definitive ERA is required only in a situation where the concentration of the contaminant(s) is sufficiently high that it may pose a risk. A Definitive ERA requires greater data collection, uses more complex and environmentally realistic methods and reduces the uncertainty in the outcome of the ERA compared to the Preliminary ERA. As a result, Definitive ERAs are considerably more time-consuming and costly than Preliminary ERAs.

This ERA is not a Definitive ERA. Instead, the spatial extent and temporal variability of PFAS concentrations in soil and surface water will be reviewed. The aim of the review is to qualitatively assess whether pathways to ecological receptors are potentially active, and in turn assess the requirement for more detailed assessment and/or management. Where necessary, the ERA may identify whether there is insufficient data to complete the assessment for particular pathways and identify where additional data is required to clarify the exposures, or where potential risks can be adequately managed without the need for further data collection or assessment.

1.4 Scope of Works

The scope of work for the current HHERA is detailed in Table 1.

Table 1: HHERA scope of works			
Item	Scope	Report Section	
Issue/Problem Identification	This stage of the HHERA process involved a review of available information to identify the appropriate data for inclusion in the HHERA and any data gaps that may impact on the outcomes of the risk assessment.	Section 3	
	The HHERA has focused on areas where a complete source-pathway-receptor (SPR) linkage has been identified to potentially exist. SPR linkages identified to be incomplete or to result in low risks to identified receptors have not been further considered.		
Human Health R	isk Assessment		
Exposure assessment	This stage of the human health risk assessment (HHRA) included:	Section 5 and Section 7	
	» Development of a HHRA CSM for the site. The CSM includes a description of the following:		
	 The source(s), nature and extent of contamination. 		
	 Potential contaminant transport and/or migration pathways. 		
	 Potential human receptors that may be exposed to contaminants, and the complete and potentially significant pathways via which they may be exposed. 		
	» Identification of the expected frequency, extent and duration of exposures by human receptors via identified significant contaminant exposure pathways.		
	 Identification and justification of relevant exposure parameters for receptors and exposure pathways considered in the HHRA. 		
	» Quantitative estimation of chemical intake concentrations for each receptor and exposure pathway.		
	» The following receptors and exposure pathways have been considered in the HHRA:		
	 School community receptors that are eating produce from the proposed expanded produce gardens and proposed chickens (eggs only). 		
	 Residential receptors that occupy properties directly adjacent to the site. Residential receptors have been assumed to be exposed via the following pathways: 		
	 Incidental ingestion of soil 		

Item	Scope	Report Section		
	 Ingestion of home grown produce (fruits and vegetables only) 			
	 Recreational receptors that visit Tarro Recreational Area/Tarro Reserve. Recreational receptors have been assumed to be exposed via the following pathways: 			
	 Incidental ingestion of surface water during swimming. 			
Toxicity	This portion of the HHRA included:	Section 6		
Assessment (incorporating hazard identification and dose- response assessment)	» Review of the potential hazards to human health associated with PFAS, based on review of toxicity profiles published by Australian or international regulatory agencies (e.g., National Health and Medical Research Council (NHMRC), World Health Organization (WHO), Agency for Toxic Substances and Disease Registry (ATSDR), United States Environmental Protection Agency (USEPA), etc.).			
	Review of toxicological (dose-response) criteria for PFAS and identification of appropriate quantitative toxicity criteria for use in the HHRA.			
Risk	This stage of the HHRA included:	Section 7.2		
Characterisation	» Characterisation of the nature and potential incidence of adverse health effects to receptors based on comparison of estimated contaminant intake or exposures to relevant toxicity (dose-response) criteria.			
	» Comparison of risk estimates with risk acceptance criteria recommended and/or adopted by state and federal regulatory agencies.			
	» Discussion of the key uncertainties associated with the HHRA process and the assumptions and exposure modelling undertaken for the HHRA.			
	» Consideration of the risk estimates in the context of identified uncertainties.			
Ecological Risk Assessment (ERA)				
Receptor identification	Review of publicly available literature to identify key ecological receptor groups for further consideration in the ERA.	Section 5 and Section 8		
Exposure assessment	It has been assumed that ecological receptors in Tarro Reserve may be exposed to PFAS via the following exposure pathways:	Section 5 and Section 8		
	» Direct contact with contaminants in soil (including uptake by plants).			
	» Ingestion of contaminants in soil (soil invertebrates and grazing organisms).			

Item	Scope	Report Section
	» Direct contact with and ingestion of contaminants in sediments and surface water in aquatic environments.	
	» Ingestion of contaminants that may have bioaccumulated in aquatic biota	
Toxicity	This stage has involved a review of the assumptions in the	Section 6 and
assessment	adopted screening criteria to determine their appropriateness for use in the current assessment.	Section 8.4
Risk	Risks characterisation has been undertaken as follows:	Section 8.5
characterisation	» Characterisation of the nature and potential incidence of adverse effects to receptors based on comparison of estimated contaminant exposures to relevant toxicity criteria.	
	» Comparison of risk estimates with risk acceptance criteria recommended and/or adopted by state and federal regulatory agencies.	
	» Where exceedances of screening criteria/toxicity values are identified, qualitative discussion of factors that may affect the toxicity of the compounds.	
	Discussion of the key uncertainties associated with the ERA process and the assumptions adopted in the ERA.	

2. Site Identification

▼

2.1 Site Details

The site is a primary school located approximately 160 kilometres (km) north of the CBD of Sydney and 20 km north west of the Newcastle CBD.

The investigation area is defined as the region in which sampling and analysis of various media was carried out to assess the nature and extent of PFAS contamination on-site. For the purposes of informing the HHERA and enabling assessment of risks to off-site receptors further sampling was undertaken in off-site areas.

Table 2: Site details

Property name	Our Lady of Lourdes Primary School – Tarro
Address	Anderson Drive, Tarro, NSW
Co-ordinates (Map Grid of Australia [MGA] Zone 56)	374835 E, 6369034 N (approximate centre of the investigation area)
Current property owners	Trustees of the Roman Catholic Church for the Diocese of Maitland and the Diocese of Maitland-Newcastle
Legal Identifier	Lots 21 and 22 of DP513106
Current property use	Primary School
Size	Approximately 4,300 square metres (m ²)
Local Government Area	Newcastle City Council
Zoning	Low Density Residential

The location of the site and the boundary of the DSI investigation area have been presented in **Figure F1** and **Figure F2**. The extent of sampling conducted in an expanded area to support the HHERA is shown in **Figure F3** through **Figure F5**.

2.2 Historical, Current, and Proposed Land Uses

Historically, the land at the rear of the Tarro Fire Station was separated from the school by a fence and was publicly accessible. Anecdotal reports from FRNSW indicate that the Tarro Fire Station used parts of the site for limited training/testing purposes, including the use of legacy AFFF products potentially containing PFAS. The exact period when legacy AFFF use would have occurred at the site is unknown; however; available information indicates it may have happened quarterly over several years. Tarro Fire Station was not a FRNSW training facility, and the use of legacy AFFF at the site is likely to have been associated with intermittent testing of firefighting equipment to ensure it was fit for use. An unknown quantity of legacy foam was used at the site and following training activities any excess of the legacy foam would have likely been

hosed into the ground. Further information on the history of the site and surrounding area is provided in the DSI (Nation Partners 2019a) for the site.

The site is currently occupied by OLOL Primary School. Lot 21 comprises the northern half of the investigation area and includes a garden area with some fruit and vegetable planting in the northern portion and a hardstand playground area in the eastern portion. Two demountable school buildings were previously located in the northern portion of Lot 21 but were removed in January 2020. The produce garden was established in late 2018 and includes fruit and vegetables in raised beds and pots, along with several small fruit trees growing in the ground. The southern portion of Lot 21 is grassed open space.

The southern half of the investigation area, Lot 22 includes demountable school buildings

In the medium term (3-5 years), it is understood that the school plans to enhance the produce garden and have laying chickens on-site. There are also plans to refurbish play equipment and adjacent grounds.

2.3 Surrounding Land Uses

The land adjacent to the site is characterised by:

- » North: Anderson Road, then residential properties followed by Tarro Reserve Fields and Tarro Reserve;
- » East: The Tarro Fire Station and Eastern Avenue, followed residential properties and Tarro Public School;
- » South: Northern Avenue, then residential properties; and
- » West: School buildings and hardstand, then residential properties.

The surrounding land is characterised primarily by low density residential land use. Tarro Public School is located approximately 35 m to the east of the site (3 Eastern Avenue – separated by Eastern Avenue).

It is reasonably anticipated that the surrounding land uses around the site will remain similar for the foreseeable future.

2.4 Previous Investigations

The investigations undertaken to date at the site include:

- » Nation Partners, 2019a. Detailed Site Investigation Report PFAS Investigation (DSI). December 2019.
- » Nation Partners, 2019b. Addendum 1 to Detailed Site Investigation Report PFAS Investigation. December 2019.

Additional information collected since the DSI has been used to inform and refine the CSM and identify the key pathways for which further detailed assessment is required as part of this HHERA. The refinement of the CSM is discussed in **Section 5**.

The data collected in January and February 2020 is detailed in Appendix A and comprised:

On-site:

- » 26 soil samples to further assess the presence of PFAS in shallow soils on-site.
- » Two (2) filtration pit water and sediment samples to assess the presence of PFAS in water and sediment collected from the pits intended to filter stormwater before it enters the subsurface infiltration system present on-site.

- » Resampling of three (3) on-site stormwater pits for surface water and sediment to confirm PFAS concentrations from previous sampling.
- » Resampling of three (3) groundwater monitoring wells to confirm PFAS concentrations from previous sampling.

Off-site:

- » 16 surface soil samples to assess the presence of PFAS in shallow off-site surface soil in the nature strips immediately adjacent to the site (running parallel to the north, east and south of the site).
- » Eight (8) surface water samples to assess the presence of PFAS in stormwater and surface water downgradient of the site.
- » One (1) sediment sample to assess the presence of PFAS in sediment at the main off-site stormwater discharge point.

All samples were analysed for an extended suite of 30 PFAS compounds. The sampling methodologies, results and QA/QC review of the data is provided in **Appendix A**.

3. Issues Identification

▼

In accordance with enHealth (2012) and NEPC (2013) this stage of the HHERA has been undertaken to establish the context of the risk assessment and identify the key elements that need to be addressed through the HHERA process.

Figure 3 presents an overview of the outcomes of the issues identification process. Overall, the assessment process to date has identified a number of potentially sensitive receptors for which an assessment of risk has not been undertaken as part of the DSI process. It is therefore considered that a HHERA is an appropriate tool to enable a more detailed site-specific approach to evaluating risks for potentially exposed sensitive receptors.

3.1 Key Stakeholders

The key stakeholders relevant to the HHERA include:

- » Employees and families within the OLOL Primary School community;
- » Residents of properties immediately adjacent to the site;
- » Users of Tarro Reserve;
- » NSW State government and regulatory authorities;
- » The site owner (Trustees of the Roman Catholic Church for the Diocese of Maitland and the Diocese of Maitland-Newcastle); and
- » Fire and Rescue NSW.

3.2 Risk Management Decisions

It is not the role of the risk assessment to determine the most appropriate management options as risk management is a separate process. The outcomes of the HHERA will however inform the risk management decision process as it will identify:

- » The key risk driving processes present at the site and how these processes contribute to the overall risk profile for the site and surrounding areas; and
- » The data gaps, uncertainties and sensitivities inherent in the risk assessment process which will further inform the decision process with regard to the need for management and/or further investigation.

What are the issues associated with the existing environmental conditions at the site?

Investigations undertaken to date at the site have identified the presence of PFAS in environmental media at concentrations which have the potential to pose unacceptable risks to human and ecological receptors where source-pathway-receptor linkages are identified to be complete.

Why is risk assessment a necessary and/or appropriate option for the site?

The Tier 1 (and limited Tier 2) risk assessment undertaken as part of the DSI process for the site identified the potential for unacceptable risks under certain land use scenarios. It was identified that a quantitative HHERA would provide an appropriate mechanism via which to conduct a site-specific assessment of the potential for risks to human and ecological populations under both current and proposed future land uses on-site, and current land uses off-site.

What level of complexity is appropriate for the HHERA?

A range of quantitative and qualitative assessment tools are available as part of the HHERA process. However the most appropriate combination of tools should be selected based on site-specific information. For the current site there was considered to be an appropriate quantity of data to enable a quantitative assessment of risks to human receptors on and off-site. However, the nature of the ecological habitat present at the site and in nearby areas as well as the available environmental data suggested that a more high level qualitative approach (in line with a Preliminary ERA as defined in the ASC NEPM) to the ecological risk assessment component was appropriate.

What susceptible or vulnerable populations are likely to be exposed to environmental impacts?

The key vulnerable populations identified during the DSI process, and for which a HHERA was considered an appropriate method of further assessment are:

- · Off-Site residents that occupy properties directly adjacent the site;
- · Recreational receptors that utilise the nearby recreational reserve; and
- Members of the school community (children, teachers and parents) that may consume produce that is grown within the investigation area.

What exposure pathways should be considered?

The primary exposure route for the contaminants of potential concern identified during the DSI process (PFAS) is ingestion as these substances are large and do not easily cross the skin. PFAS are also not volatile in the chemical forms found at the site therefore inhalation is not considered a significant pathway.

What outcomes is the HHERA intended to inform?

The outcomes of the HHERA will inform remediation, management and ongoing monitoring plans for the site and surrounding impacted areas. The HHERA will identify the key risk driving pathways which will assist the key stakeholders in deciding which remediation and management options will result in the greatest beneficial impact to receptors.

How urgently are risk outcomes and management measures needed at the site?

The key stakeholders for the site include teachers and parents responsible for the wellbeing of young children. It is therefore important that the HHERA process is both thorough and based on best practice approaches but also that it is undertaken within an accelerated timeframe to provide regluar updates for these stakeholders to ensure that their needs are met and mitigation measures are implemented as soon as practicable where they are identified to be needed.

Figure 3: Issues Identification Summary

4. Data Evaluation

▼

4.1 Data Used in the Risk Assessment

In preparing the current HHERA, Nation Partners has relied upon the data and information presented in the following documents:

- » Nation Partners, 2019a. Detailed Site Investigation Report PFAS Investigation (DSI). December 2019.
- » Nation Partners, 2019b. Addendum 1 to Detailed Site Investigation Report PFAS Investigation. December 2019.

For full details of the objectives of these reports, the available data, and the assessment of data quality, reference should be made to the above mentioned reports and Addendum 2 to Detailed Site Investigation Report – PFAS Investigation provided in **Appendix A**.

In addition to the analytical data, a water use survey was completed by residents of the surrounding area to assess water and land use (**Section 4.2**).

Information from the above listed reports considered relevant to the site environmental setting has been summarised in the CSM presented in **Section 5**. Sample locations included in the above listed reports have been shown in **Figure F3** through **Figure F5**.

4.2 Water use survey

A water use survey was prepared to investigate water supply and patterns of use at private properties outside of the DSI investigation area. The water use survey aimed to provide information on the potential use of bore and surface water on private properties in the vicinity of the site, particularly down gradient. The residents surrounding the site on Anderson Drive, Eastern Avenue, and Northern Avenue were door knocked on 18 February 2020 and the water use survey was available for completion by contacting the project hotline.

Three (3) surveys were completed by residents. All participants reported they used town water for drinking, cooking, showering, and irrigation. In addition, all participants reported that they do not abstract groundwater for any purpose on their property. Some participants indicated they grew their own produce on site, however they reported that their produce was watered with town water with irrigation occasionally being supplemented with tank (rain) water. Only one participant was identified to keep chickens on their property for the purpose of collecting and consuming eggs, all other participants were not identified to keep chickens.

Participants indicated they fished recreationally in Port Stephens. No participant reported that they swam in local surface water bodies.

A further two (2) residents did not wish to fill out the survey but did verbally indicate that they only used town water and did not have tanks or bores at their property. Similar anecdotal responses in relation to a lack of bore water usage were provided by members of the school and local community during engagement activities as part of the DSI.

4.3 Data Quantity

Samples of soil, surface water, sediment and biota were collected during the investigations listed in **Section 4.1** and **Appendix A**. The location and number of samples is presented in **Table 3**.

The data obtained from these samples is considered to be sufficient to enable a reasonable estimation of potential exposure to identified receptors within the HHERA. In addition, the data has been collected is considered to provide suitable spatial coverage of potential exposure areas to inform risk outcomes and risk management decisions.

It is noted that the surface water samples collected from on-site (SW1, SW2 and SW5) were from within stormwater pits where the water had accumulated following rainfall events. The first time these locations were sampled, was during an extended dry period where water had been present in the pits for an unknown period of time. The second round of sampling at these locations was conducted was during wet conditions to obtain data that was more representative of stormwater concentrations during rainfall events.

Matrix Type	Number of Sample Locations	Number of Samples (a)
On-site		
Soil (all depths)	38	81
Soil (0.0 – 0.4 m bgl)	35	48
Sediment	4	4
Groundwater	2	4
Surface Water/Stormwater	6	8
Off-site		
Soil (0.0-0.2 m bgl) (b)	16	16
Surface Water	8	10
Groundwater	1	2

Table 3: Summary of Data Quantity

(a) It is noted that multiple samples have been collected from some sample locations to provide additional temporal or spatial data (e.g. samples collected across the sub-surface profile, or resampling groundwater monitoring wells).

(b) Off-site soil samples were collected from a maximum depth of 0.2 m bgl as site-derived soil impacts are considered to be present as a result of surface run-off and wind dispersion mechanisms only. There was no identified source of contamination in deeper soils off-site (other than leaching from surface soils and percolation of rainwater through the soil profile which is not considered likely to result in increased soil concentrations at depth).

4.4 Data Quality

The analytical data collected during the investigations conducted at the site was reviewed during the investigation reporting phase to evaluate whether the data were in compliance with the data quality indicators (DQIs) set prior to commencement of the works. The data assessment (or validation) process included checking of analytical procedure compliance and an assessment of the accuracy and precision of the analytical data from a range of quality control measurements generated from both the sampling and analytical programs.

The details and outcomes of the data validation process has been incorporated into each of the reports listed in **Section 4.1** and thus have not been further detailed in the current HHERA. Review of the data validation

outcomes did not identify any significant issues that may impact on the overall precision and accuracy of the primary data set. Therefore, the analytical results obtained from investigations conducted at the site to date were considered to be valid and representative of concentrations of the analysed compounds at the sample locations tested. The data was thus considered to be suitable for use in the assessment of exposure risks to identified receptor populations both on and surrounding the site.

4.5 Data Limitations

The available data for environmental media is considered adequate to characterise the nature and extent of PFAS contamination at the site and in the area surrounding the site, and to enable assessment of potential health or ecological risks. However, it is noted that data limitations which have potential to impact on the outcomes of the HHERA have been identified based on review of the available data from previous investigations. These are summarised in **Table 4** below, along with a description of the method used to address these data limitations in the HHERA.

The identified data limitations may result in a marginal increase in uncertainty, however, the overall conclusions reached in this HHERA are considered unlikely to be significantly impacted due to:

- » A number of conservative exposure parameters have been adopted in the exposure modelling for human health risks to account for data limitations (e.g. assuming 10% of fruits and vegetables consumed are derived from home grown produce as per the ASC NEPM; exposures throughout the entire exposure duration are to the maximum reported PFAS concentrations in environmental media sampled etc.).
- » Theoretical modelling of plant and chicken egg uptakes has been adopted, and has been validated against available data, to estimate exposure through home grown produce pathways.
- » Qualitative approaches have been adopted in the ERA portion of this report to enable consideration of ecological risks in the absence of analytical data.

Data Limitation	Potential Significance	Manner in Which Addressed in the HHERA
Limited number of biota samples – fruit and vegetable samples from on and off-site locations have been limited to date.	Low (fruits and vegetables) – given the low reported soil concentrations in surficial soils on-site and off-site and the results of the water use survey which suggests that groundwater is not extracted for irrigation purposes in the area, it is considered unlikely that home grown fruit and vegetable produce is a significant source of PFAS exposure. High (chicken eggs) – literature chicken egg uptake factors indicate that where there is PFAS in soils there is potential for uptake into chicken eggs at concentrations which may result in exposures above the recommended daily PFAS intakes.	 Plant and egg concentration/uptake factors have been used to estimate PFAS concentrations in home grown produce. Estimated concentrations have been validated against the produce sample results (fruits and vegetables only) collected to ensure appropriate exposure concentrations are considered. Uptake values for chicken eggs have been adopted from published data for a study conducted to assess PFAS uptake into domestic chickens (eggs) as a result of PFAS exposure in water. In the absence of site-specific information, and due to a lack of data relating to PFAS uptake as a result of exposure to PFAS in soil, this

Table 4: Summary of Data Limitations

Data Limitation	Potential Significance	Manner in Which Addressed in the HHERA
		published data is considered appropriate to provide an indication of potential chicken egg concentrations under future land use conditions.
No aquatic biota samples collected from the waterway within Tarro Reserve.	Low – the water use survey did not identify local residents that collect aquatic organisms for consumption purposes from the waterway within Tarro Reserve. In addition, given the highly modified nature of this waterway it is considered unlikely to be a significant food source for local wildlife.	It has been assumed that local residents and recreational users of Tarro Reserve do not consume aquatic biota collected from this area. Further assessment of potential for risks to ecological receptors has been qualitatively considered in the HHERA.
Limited number of off-site soil samples	Low – the nature of the historical use of fire fighting foams which contained PFAS is such that the highest concentrations of PFAS are likely to be found in the primary training area (on-site) with diffuse low level concentrations present in the surrounding area. This assumption is supported by the data collected to date, and therefore indicates that the sampling conducted to date is appropriate for assessing risks and implementing management measures.	Exposure estimates have been based on the highest reported soil concentrations collected from off-site areas, including soils collected directly outside the boundary fence of the site.

4.6 Selection of Contaminants of Potential Concern

AFFF products containing primarily PFOS, PFHxS and other perfluoroalkane sulfonic acids (PFSAs), with lesser components of Perfluoroalkane Carboxylic Acids (PFCAs, including PFOA) and fluorotelomers such as 6:2 Fluorotelomer sulfonic acid (6:2 FTSA), were historically used by FRNSW.

Whilst PFOS, PFHxS, and PFOA are the most commonly tested and reported compounds, these are only three of a wide range of PFAS which are potentially present in AFFF. While regulatory investigation levels are not available for the additional PFAS compounds present in AFFF, they are still being considered as CoPC. As such, an analytical suite comprising 30 PFAS compounds was selected for the previous investigations (refer to **Section 2.4**).

An evaluation of the most prevalent PFAS compounds within environmental media at the site and in off-site areas identified that PFOS, PFOA, PFHxS, PFHxA, PFPeA and PFBS were most commonly present (refer to **Figure 4** through **Figure 7**.

To enable an evaluation of risks based on as many of the PFAS compounds present as possible, a literature search was conducted to evaluate whether toxicity values are available for PFAS other than PFOS, PFOA and PFHxS. Toxicity values were identified for PFHxA, therefore it was determined that it would be included

in the HHRA. The CoPC for this report are PFOS, PFOA, PFHxS, and PFHxA. Using these CoPCs as indicators of overall risk is considered appropriate as:

- » Guidance Statements issued by enHealth (2016) state the PFAS of most concern are PFOS, PFOA, and PFHxS;
- » While other PFAS compounds were detected in the previous investigations, reported concentrations are generally much lower (e.g. orders of magnitude below) the measured concentrations of PFOS, PFHxS and PFOA (refer to results presented in the attached **Table T1** through **Table T3**);
- » Screening criteria that have been adopted to be protective of human health and the environment are available for PFOS, PFHxS and PFOA but no other PFAS compounds; and
- » A margin of safety approach will be adopted to provide an indication of the potential for cumulative exposure to multiple PFAS to result in unacceptable risks.

Overall the data indicate that assessment of these four major PFAS compounds (PFOS, PFOA, PFHxS, and PFHxA) will provide an adequate indication of potential risks to identified receptors.

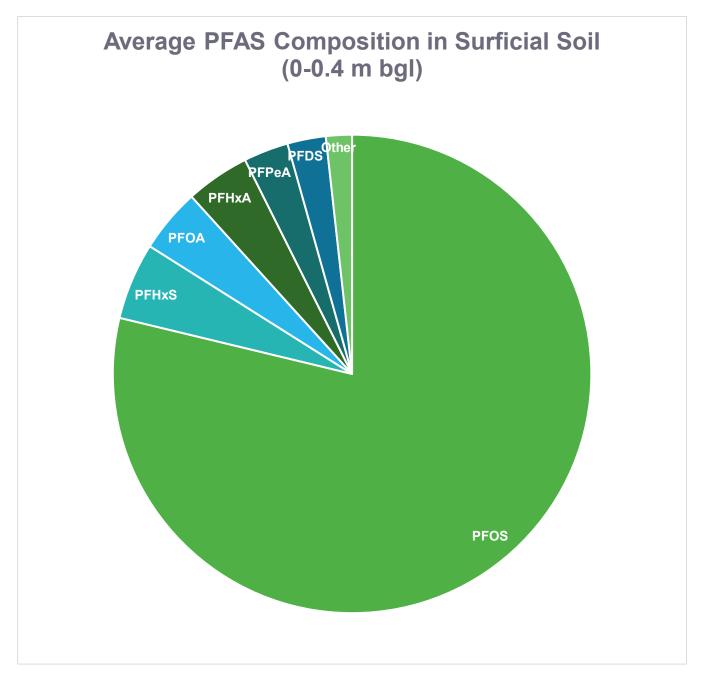


Figure 4: PFAS in on-site soil

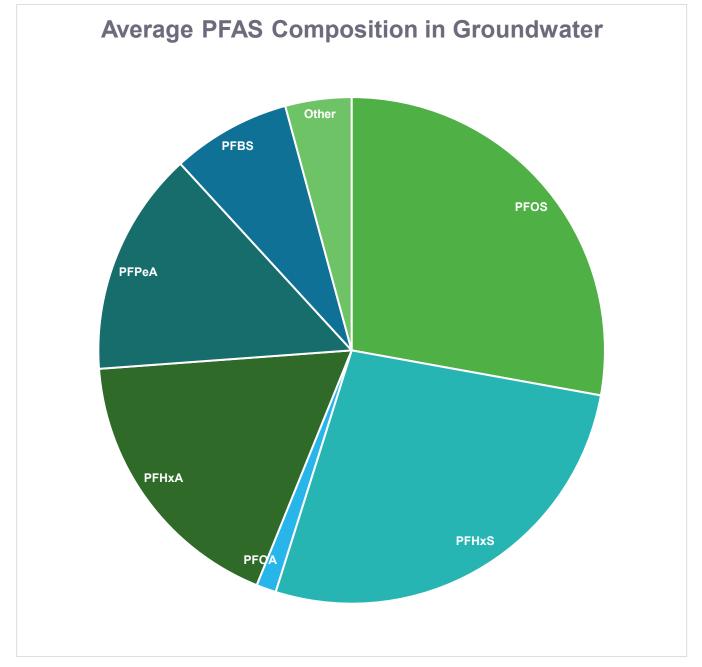


Figure 5: PFAS in on-site groundwater



Figure 6: PFAS in on-site surface water

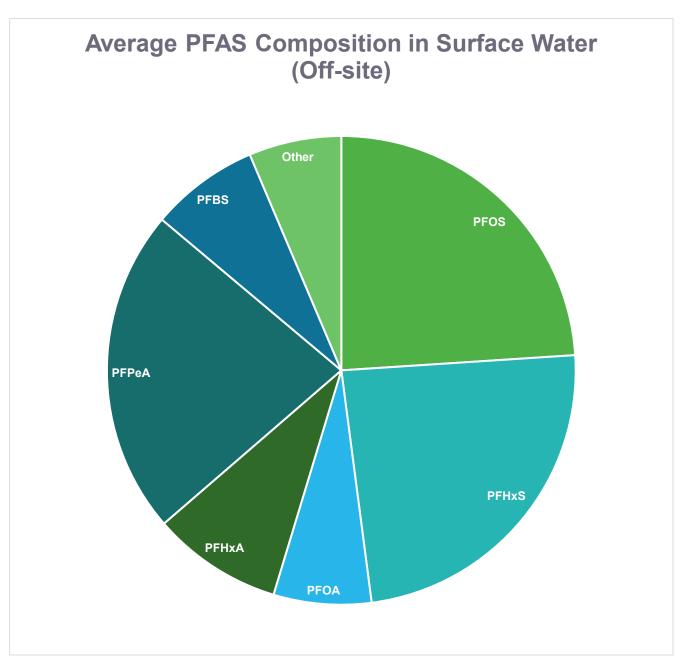


Figure 7: PFAS in off-site surface water

5. Conceptual Site Model

▼

5.1 Environmental Setting

5.1.1 Topography and Hydrology

The site is relatively flat with an elevation that ranges from approximately 7.5-10 m Australian Height Datum (AHD). It exists on the northern side of a shallow ridge which gently slopes to the north and east. Surface water drainage follows the topography to the north east, towards the infiltration unit present in the north-eastern corner of the site. The overflow from this unit enters the local stormwater system on Anderson Drive and is expected to discharge to the north towards Tarro Reserve and waterbodies north of the reserve. This area discharges to the Hunter River (approximately 2 km to the east of the site) via Purgatory Creek (approximately 800 m to the east of the site).

5.1.2 Soils, Geology and Hydrogeology

The site's regional geological unit is the Tomago Coal Measures, which are described as Siltstone, sandstone, coal, tuff, claystone, conglomerate and minor clay. The on-site soil measures are described as Beresfield residual soils.

A previous geotechnical report for the school (Coffey [2007], *Proposed Additions - Our Lady Of Lourdes Primary School, Tarro, Geotechnical Assessment*) was reviewed and included four boreholes approximately 30-50 m west of the site. Soils generally encountered were:

- » FILL (topsoil), comprising clayey silt, from the surface to 0.1-0.2 metres below ground level (mbgl);
- » Sandy grading to silty CLAY from 0.1-1.5 mbgl; and
- » Extremely weathered SILTSTONE, excavated as a silty clay, from 1.5-2.2 mbgl (the termination depth of boreholes).

The hydrogeology on-site, according to regional plans in Lotsearch (2019) (the Lotsearch report is presented in the DSI (Nation Partners, 2019a) is characterised by fractured or fissured extensive aquifers of low to moderate productivity.

Soils encountered during the DSI were generally consistent across the investigation area and were similar to those described in the previous geotechnical investigation. Deeper boreholes for the three monitoring wells were completed using a solid flight auger with tungsten-carbide bit and encountered grey/brown weathered siltstone/shale until completion depths at 7-8 mbgl. Minor water ingress (increased moisture in cuttings) was observed during drilling of each well, typically at a depth of approximately 6.5 mbgl in weathered rock. The standing water level (SWL) in each well was higher than the depth of water strike, indicating a confined or semi-confined aquifer.

The calculated groundwater flow direction was north to north-north-east (towards Tarro Reserve), at a gradient (i) of 0.03.

5.1.3 Registered Groundwater Bores

A review of Lotsearch 2019 identified the closest registered bores to the site are:

Well ID	Use	Depth (m)	Standing Water Level (m)	Distance from the site
GW201549	Monitoring	3.1	-	1253 m south east
GW202428	Monitoring	4.0	1.2	1919 m south east

Further review of the Australian Groundwater Explorer¹ indicates that the bores to the south east are nearer to the Hunter River at an elevation approximately 5-8 m lower than the site and are screened in alluvial soils. Additional monitoring bores are located approximately 2.2 km west of the site at an elevation approximately 5 m higher and are generally 12-15 m deep and screened in sandstone/siltstone.

The Catholic Diocese advised that there are no known groundwater bores installed at the school. No existing groundwater bores were observed during the previous investigations. In addition, a water use survey of residents surrounding the site did not reveal the use of groundwater bores in the immediate vicinity of the site (Section 4.2).

5.1.4 Sensitive Receptors

To the north of Tarro Reserve, approximately 205 m north of the site, is a freshwater waterbody that is used primarily as a stormwater retention facility where stormwater from the area discharges during storm events. Based on historical aerial photography this lake was constructed between 1984 and 1991 when surrounding low-lying areas were filled to create the Tarro Reserve sporting fields.

Further north, beyond the railway line and connected to the Tarro Reserve retention lake by a culvert, is a freshwater wetland area (referred to as 'Tarro Swamp' on the 2015 topographic map in Lotsearch [2019]). It is located approximately 500 m north (downgradient) of the site. Data from the Lower Hunter and Central Coast Regional Vegetation Survey in Lotsearch (2019) describes the area as a Freshwater Wetland Complex. Based on field observations over the course of the DSI and historical aerial photographs, Tarro Swamp is an ephemeral waterbody and is traversed by a number of roads/tracks and fences.

Lotsearch (2019) also indicates that the wetland is a high potential aquatic groundwater dependent ecosystem (IDE) and has a high likelihood as an inflow dependent ecosystem (IDE).

The wetland area is expected to drain to Purgatory Creek, located approximately 800 m east of the site, which then discharges to the Hunter River approximately 2 km east of the site.

5.2 Nature and Extent of Contamination

The findings of PFAS investigations completed by Nation Partners since 2019, and upon which the HHERA has relied, are summarised in **Section 5.2.1** to **Section 5.2.5** below.

5.2.1 Soil

On-site

Concentrations of PFAS exceeding the human health screening values for residential use with gardens/ accessible soil were reported in 64 of the 81 samples analysed. This screening value was used as a conservative measure for initial screening purposes given the site use as a primary school. This land use scenario assumes, among other things, the consumption of 10% of a person's fruit and vegetable intake

¹ <u>http://www.bom.gov.au/water/groundwater/explorer/map.shtml</u>

comes from produce grown in the site's soil. The minor produce grown and consumed at OLOL Primary School would not constitute 10% of dietary intake. In addition, produce grown at OLOL, with the exception of several small citrus trees, is in pots or planters using imported soil. One sample of soil from a large planter box that was located on the ground was collected and analysed for PFAS. Concentrations were below the laboratory limit of reporting.

A total of 14 exceedances of the human health screening value for public open space were reported which are considered to be more applicable to the way the land is used at the school.

Due to the exceedances of the human health screening values for PFAS in soils, a preliminary risk assessment was undertaken. The site-specific assessment indicated that risks associated with exposure to PFAS, via incidental ingestion of soils, were considered to be low and acceptable (i.e. PFAS intakes are likely to be less than the Tolerable Daily Intake recommended by Food Standards Australia New Zealand) for exposures to both surface (<0.2 mbgl) and near surface (<0.4 mbgl) soils at the site.

Eight soil samples exceeded the interim ecological direct exposure criterion for PFAS.

Off-site

Concentrations of PFAS exceeding the human health screening values for residential use with gardens/ accessible soil were reported in 9 of the 16 nature strip soil samples analysed. This screening value was used as a conservative measure for initial screening purposes given the residential context of the surrounding land uses to the site.

Public open space is a more appropriate screening criteria for nature strip areas, regardless of the surrounding land use context. No exceedances of the human health screening value for public open space were reported.

The interim ecological indirect exposure criterion for PFAS was exceeded in 9 of the 16 nature strip soil samples analysed. There were no exceedances of the ecological direct exposure criterion for PFAS.

5.2.2 Groundwater

Groundwater was encountered beneath the site at a depth of approximately 6 m. Concentrations of PFAS were detected in groundwater down gradient of the likely area of AFFF use. PFAS concentrations in groundwater up gradient of the likely AFFF use area were less than the laboratory limit of reporting.

An exceedance of the drinking water quality screening value was reported from one groundwater monitoring well at the downgradient boundary of the site. No exceedances of the recreational water quality criterion were reported. As groundwater is not consumed or used at OLOL Primary School, PFAS in groundwater at the site is not considered to pose a direct risk of elevated exposure to the school community.

The concentration of PFAS in the same downgradient monitoring well exceeded the PFAS ecological freshwater protection screening levels.

These screening value exceedances were replicated in the second round of groundwater sampling undertaken in February 2020, though lower concentrations of PFAS were reported.

5.2.3 Surface Water

On-site

Concentrations of PFAS exceeding the drinking water and recreational water quality screening values were detected in one of two samples of surface water collected from the OLOL Primary School stormwater system in October 2019. As surface water is not utilised for drinking at the site or local area, and access to stormwater is limited as it is contained within a subsurface drainage system, PFAS in surface water at the site is not considered to pose a direct risk of elevated exposure to the school community.

The concentration of PFAS in surface water also exceeded the PFAS ecological freshwater protection screening levels.

The two stormwater system locations were resampled in January 2020, along with one additional location. PFAS concentrations were lower than in 2019, with all results below the recreational water quality screening value.

A sample collected from one rainwater tank reported no detectable concentrations of PFOS, PFHxS and PFOA (all results were below the laboratory reporting limit).

Off-site

Concentrations of PFAS exceeding the drinking water quality screening values were detected in four (4) of the 10 samples of surface water collected in off-site surface water.

No exceedances of the health-based guidance value for recreational water were reported.

The concentration of PFAS in surface water also exceeded the PFAS ecological freshwater protection screening levels where:

- » Two (2) of the 10 surface water results exceeded the screening criterion for freshwater 95% species protection level for PFOS, and
- » The 10 surface water results exceeded the screening criterion for freshwater 99% species protection level for PFOS. It should be noted that any results above the laboratory limit of reporting [LOR] were considered to exceed the freshwater 99% species protection level.

Samples collected from an off-site rainwater tank and pond reported no detectable concentrations of PFOS, PFHxS and PFOA (all results were below the laboratory reporting limit).

5.2.4 Biota

Samples collected from five on-site homegrown produce samples reported no detectable concentrations of PFOS, PFHxS and PFOA (all results were below the laboratory reporting limit). Concentrations of PFOS, PFHxS and PFOA were below the relevant screening levels in the produce samples. This indicated that the consumption of edible produce currently grown in the current garden area at the site was not an active pathway for exposure to PFAS.

5.2.5 Groundwater – Surface water interactions

In this HHERA, potential risks to both human and ecological receptors contacting surface water bodies are assessed through consideration of concentrations at the point of exposure (i.e. in surface water). In this context, concentrations in groundwater are not considered directly relevant to the assessment of risks to these receptors. However, it remains important for the purposes of developing a conceptual site model to understand the extent of groundwater – surface water interactions, and on this basis to assess whether the identified PFAS concentrations in groundwater may act as a contributing source to surface water.

Shallow groundwater and surface water potentially interact in some areas surrounding the site, i.e. Tarro Swamp/Tarro Wetland Reserve. As discussed in the DSI (Nation Partners, 2019) this source – receptor – pathway (SPR) linkage is considered unlikely given the PFAS concentrations reported in groundwater at the downgradient site boundary, the hydrogeological conditions encountered on-site (low yields and likely low conductivity of the shale aquifer and measured slight groundwater gradient), and the distance to this receptor (250 m – not considered a long distance for PFAS migration in water, but considered substantial in the context of the local hydrogeological conditions).

While this has not been quantified, sampling of drains and waterways downgradient of the site has been undertaken and indicates that surface water is the primary migration pathway. As such, the potential influence of groundwater and surface water interactions on the quality of surface water is considered to have been assessed, with the surface water quality reported in the DSI a function of surface runoff (primary migration pathway) and groundwater discharges (if any).

5.3 Contaminant Transport Mechanisms

Potential transport mechanisms via which CoPC may migrate within and from the site are summarised in **Table 5**.

Table 5: Potential Contaminant Transport Mechanisms								
Transport Mechanism	Comment	Likelihood or Significance						
Wind erosion and atmospheric dispersion of surficial soils	PFAS has been reported to be present in surficial soil samples collected from across the DSI investigation area and from nearby nature strips.	Potential – it is unclear what transport mechanism (potentially spray drift during training exercises, or overland flow of stormwater) has resulted in the presence of PFAS in surficial soils along the adjacent nature strips, however given the unsealed nature of the site, there is potential for wind erosion to occur.						
Volatilisation and vapour migration	The PFAS reported to be present at the site are not considered to be volatile in nature.	Unlikely – the CoPC identified for the site are not considered to be volatile, therefore it is considered unlikely that contamination present at the site is present in the vapour phase.						
Leaching from soil to groundwater and transport in groundwater	Historical fire training at the site is understood to have been conducted on unsealed areas of the site. PFAS has been reported to be present in groundwater sampled from beneath the site.	Likely – the presence of PFAS in groundwater beneath the site and the unsealed nature of the site indicates that PFAS present in soils may have leached into rainwater and been transported to the groundwater table as it percolated through the sub-surface profile.						
Discharge of impacted groundwater to nearby surface water bodies	Groundwater has been reported to contain PFAS beneath the site.	Potential – the presence of PFAS in groundwater and the distance to the nearest water body (~250 m) is such that there is potential for impacts in groundwater to be discharging to surface water.						
Leaching from surficial soils to surface run-off and discharge to nearby waterways	PFAS has been detected in surface water sampled from along the stormwater drainage channels leading from the site to Tarro Reserve wetland. Surface water sampled from the Tarro Reserve wetland was also reported to contain PFAS.	Likely – reported PFAS in surface water samples indicates that PFAS is leaching from soils at the site into surface run-off and entering the stormwater system. It has been identified that the stormwater system for the site is connected to the Tarro Reserve lake and the Tarro Swamp wetland.						
Accumulation of PFAS in biota that inhabit Tarro Reserve wetland	A number of PFAS compounds reported to be present in environmental media are known to be bioaccumulative.	Likely – the reported presence of PFAS in surface water within Tarro Reserve wetland indicates that there is potential for bioaccumulation to be occurring.						

Table 5: Potential Contaminant Transport Mechanisms

5.4 Receptors

Based on the current land use at the site and in the surrounding area, the following receptors are considered to have the potential to be exposed to site-derived PFAS impacts:

- » Adults and children that work at or attend OLOL Primary School;
- » Residents (adults and children) that live on properties adjacent to the site;
- » Recreational receptors that use Tarro Reserve for recreational activities; and
- » Ecological receptors that inhabit or forage within Tarro Reserve.

5.5 Potential Exposure Pathways

In order for a human receptor to be exposed to a chemical contaminant deriving from a site, a complete exposure pathway must exist. An exposure pathway describes the course a chemical or physical agent takes from the source to the exposed individual and generally includes the following elements (USEPA, 1989; NEPC, 2013):

» A source and mechanism of chemical release;

» A retention or transport medium (or media where chemicals are transferred between media);

» A point of potential human contact with the contaminated media; and

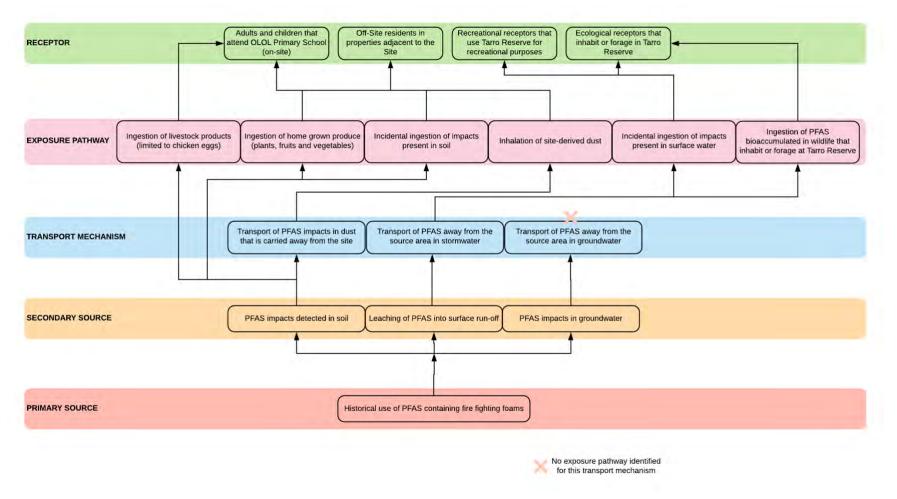
» An exposure route (e.g. inhalation) at the point of exposure.

Where one or more of the above elements is missing, the exposure pathway is considered to be incomplete and there is therefore no risk to the receptor.

Exposure pathways that have been considered to be complete for identified on-site and off-site receptors have been summarised in **Table 6** below.

Table 6: Summary of Exposure Pathways Considered in the HHERA

Exposure Pathway	Complete (Yes/No)	Comments					
Adults and children that work at or attend OLOL Primary School							
Dermal contact with impacts in environmental media (soil, water)	No	PFAS are not readily absorbed via the dermal exposure pathway and therefore this pathway is not considered to be complete at the site.					
Incidental ingestion of soil and Inhalation of dust generated from on-site soils	Yes	The DSI identified that exposure to PFAS impacts in soil as a result of incidental ingestion and dust inhalation for adults and children is low and acceptable, however for the purpose of understanding the cumulative exposures to all exposure pathways on-site this exposure pathway has been considered to be complete for these receptors.					
Incidental ingestion of groundwater	No	No groundwater extraction is occurring on the site therefore this exposure pathway is not considered to be complete at the site.					
Incidental ingestion of surface water and sediments	No	There are no natural waterways present on-site and stormwater is managed through a sub-surface drainage system which limits access to pooled stormwater.					


Exposure Pathway	Complete (Yes/No)	Comments
		Therefore, this exposure pathway was not considered to be complete at the site.
Future Exposure Pathway – Ingestion of home grown produce	Yes	OLOL have indicated that there is a potential for additional garden beds to be constructed at the site for the purpose of growing fruits and vegetables for human consumption. This future exposure pathway has been assessed to inform the design process.
Future Exposure Pathway – ingestion of chicken eggs collected from the site	Yes	OLOL have indicated that there is a potential for chickens to be housed at the site for the purpose of collecting eggs for human consumption. This exposure pathway has been assessed to inform the decision process with regard to chickens at the site.
Residents (adults and children) t	hat live on p	roperties adjacent to the site
Dermal contact with impacts in environmental media (soil, water)	No	PFAS are not readily absorbed via the dermal exposure pathway and therefore this pathway is not considered to be complete for these receptors.
Incidental ingestion of soil and Inhalation of dust generated from on-site soils	Yes	Sampling of surface soils along the nature strip indicates that there is potential for PFAS to be present in surface soils in residential properties. Although the reported concentrations are below public open space screening criteria, this exposure pathway has been considered to enable assessment of cumulative exposures from multiple exposure pathways.
Incidental ingestion of groundwater	No	A water use survey conducted for nearby residents did not identify any residents that were utilising groundwater for extractive purposes.
Incidental ingestion of surface water and sediments	No	As noted above, the stormwater from the site is managed via a sub-surface drainage system which discharges directly into the enclosed local stormwater system. This system flows into open drainage channels within Tarro Reserve.
Ingestion of home grown produce (fruits and vegetables)	Yes	During the water use survey some participants indicated that they grow fruits and vegetables in their gardens. Due to the limited nature of off-site soil samples this exposure pathway has been assessed to evaluate the potential for risks to these receptors.
Ingestion of chicken eggs from chickens kept in residential gardens	No	This exposure pathway was not identified to be complete for off-site residents near the site under current land use conditions.
Recreational receptors that use	Tarro Reserv	e for recreational activities
Dermal contact with impacts in environmental media (soil, water)	No	PFAS are not readily absorbed via the dermal exposure pathway and therefore this pathway is not considered to be complete for these receptors.

Exposure Pathway	Complete (Yes/No)	Comments
Incidental ingestion of soil and Inhalation of dust generated from on-site soils	No	It is considered unlikely that recreational receptors in Tarro Reserve would be exposed to site-derived PFAS impacts in soil and dust during recreational activities.
Incidental ingestion of groundwater	No	No extractive uses of groundwater have been identified within Tarro Reserve.
Incidental ingestion of surface water and sediments	Yes	There is potential for recreational users of Tarro Reserve to enter the waterway for the purposes of primary contact recreation (swimming). However, the water use survey did not indicate that local residents are utilising Tarro Reserve for the purpose of primary contact recreation.
Ingestion of aquatic biota from Tarro Reserve	No	Local residents indicated that fishing was not undertaken within Tarro Reserve due to proximity to popular fishing waterways such as the Hunter River and Nelson Bay.
Ecological receptors that inhabit	t or forage wi	thin Tarro Reserve
Ingestion of soil/sediment during foraging activities	Yes	The presence of PFAS in stormwater discharging to Tarro Reserve, and in surface water bodies in the
Ingestion of surface water within Tarro Reserve	Yes	reserve and adjacent wetland, indicates that there is potential for ecological receptors to be exposed as a
Ingestion of aquatic and terrestrial biota in Tarro Reserve	Yes	result of ingestion of environmental media and as a result of the ingestion of PFAS accumulated within biota.

5.6 Conceptual Site Model Summary

The conceptual site model for the site and surrounding off-site areas has been depicted in a flow diagram in **Figure 8**.

SOLUTIONS FOR COMPLEX PROJECTS

6. Toxicity Assessment

▼

The toxicity assessment stage of a risk assessment is comprised of two components: hazard identification and dose-response assessment. The hazard identification stage is a qualitative description of the capacity of a contaminant or agent to cause harm. The dose-response assessment includes the selection of appropriate toxicity criteria from a hierarchy of sources, in accordance with Schedule B4 of the ASC NEPM (2013).

6.1 Hazard Identification

The hazard identification process involves a review of existing toxicological information from appropriate sources to describe the capacity of a specific agent to produce adverse health effects. The following is a summary of the outcomes of the hazard assessment as it relates to human exposures:

- » The scientific literature on the effects of these chemicals on people is inconclusive. However, testing on animals has shown some effects at low doses (FSANZ, 2018).
- » There is no consistent evidence that exposure to PFAS causes adverse human health effects (FSANZ, 2017b).
- » Studies have shown that only a small amount of PFAS can enter the human body through the skin barrier (ATSDR, 2018).
- » The primary exposure route for PFOS, PFOA and PFHxS is likely ingestion of contaminated water or food. PFAS can then be readily absorbed in the gastrointestinal tract. PFAS are not volatile but may be inhaled into the lungs with dust generated during indoor or outdoor activities, however this is not thought to be a major exposure route for the general public. A study conducted by the NSW Government identified that dust inhalation accounts for a very small proportion of daily intake of PFAS in areas directly surrounding impacted sites (NSW EPA, 2017).
- » PFAS readily bind to albumin and low-density lipoproteins in human, rat, bovine and monkey plasma, accumulating primarily in blood, liver and kidney tissue. PFAS have both lipophobic and hydrophobic properties precluding them from accumulating in fatty tissue.
- » The body does not metabolise PFOS, PFOA, PFHxS or PFHxA but it is possible for longer chain PFAS compounds to oxidise, forming these shorter chain compounds within the body.
- » The primary elimination methods from the body for PFAS are via urine, breast milk, and blood loss. The available data indicate that PFAS is passed out of females more quickly than males. Average half-lives in humans range from 2.3-8.67 years.
- » It is not known if there are any toxic effects on humans from acute exposure to PFAS. A literature review by ToxConsult (2016a, 2016b) did not identify any case reports of human health effects from acute exposure to high doses of PFOS.
- » The toxic effects of chronic exposure to PFAS are not well understood in humans. Potential associations have been identified by the USEPA (2016) with increased serum cholesterol and decreased birth weights but a review of these studies by FSANZ (2017b) concluded that it is not possible to determine if these changes were caused directly by PFOS or PFOA, or if there were other factors involved.
- » In animals, the most sensitive toxic effects of PFAS relate to hepatic and developmental toxicity. Due to large interspecies differences in toxicokinetics of PFAS, and mechanisms of toxicity that are not shared between the species, extrapolation of animal data to exposure in humans is highly uncertain.

- » While immune effects have been observed in mice following acute and intermediate-duration PFAS exposure, these data do not suggest that PFAS are immunotoxic in rats or monkeys. A literature review by FSANZ (2017b) concluded that "there are both positive and negative studies showing associations for increasing PFOS and PFOA concentrations to compromise antibody production in humans. However, to date there is no convincing evidence for increased incidence of infective disease associated with PFOS or PFOA effects on human immune function."
- » PFOS, PFOA, PFHxS and PFHxA are not mutagenic or genotoxic. High exposures of PFOS and PFOA have been linked to tumour formation in animal tests. Tumour formation for both PFOS and PFOA was observed at greater exposure doses than that at which other health effects occurred. It is also noted that due to the differences between rats and humans, as well as the manner in which high exposure to PFOS induced tumour growth in rats, it is unlikely that the tumour formation observed in rats will occur in humans. Epidemiological studies have yet to provide convincing evidence of a correlation between any type of cancer in humans and PFOS or PFHxS. There have been some associations noted between certain human cancers and PFOA, but contradictory results have been seen between epidemiological studies and a causal relationship cannot be established with certainty.

The following is a summary of the outcomes of the hazard assessment as it relates to ecological exposures:

- » The per-fluorinated sub-group of PFAS (including PFOS, PFOA and PFHxS) are highly resistant to degradation in the environment. This results in these compounds tending to bioaccumulate and biomagnify up the food chain, with the highest concentrations of PFAS compounds frequently measured in apex predators.
- » PFOS will strongly adsorb to soils and sediments while PFOA is less readily adsorbed and may be more mobile in soils. Impacts adsorbed to sediment can be remobilised back into the surface water over time or enter the food chain. Both PFOS and PFOA have a high solubility in freshwater, with decreasing solubility seen with increasing salinity.
- » In freshwater ecosystems, zebrafish show a reduction in fecundity of 34% when exposed to a PFOS concentration of 500 µg/L for two-weeks. This increased to 47% when the exposure time was increased to three weeks. Chronic PFOS exposure of >50 µg/L resulted in decreased body length and weight, altered sex ratio and impaired male gamete function in adult zebrafish. It also produced a decrease in embryo development and larval survival (CRC CARE 2017).
- » The most sensitive freshwater macroinvertebrate to PFOS contamination were midges. Emergence success decreased in the presence of surfactants and PFOS may also interfere with the function of haemoglobin in midges (CRC CARE 2017).
- » There have been comparatively few studies investigating the toxicity of PFAS in the marine environment compared with those for the freshwater environment. Salinity can affect the transport of PFAS and it is thus important to consider toxicity in marine organisms separately from freshwater species. CRC CARE (2017) noted a study where an intertidal copepod (*Tigriopus japonicas*) was exposed to PFOS concentrations of up to 1 mg/L and was found to have decreases in reproduction and growth of individuals at concentrations of 0.25 mg/L. Another study noted in CRC CARE (2017) found that teleost fish (*Oryzias melastigma*) had impaired gene expression relating to cardiac development, specifically effecting heart formation and heart rate, when exposed to PFOS at a minimum of 8 days post-fertilisation.
- » In the terrestrial environment earthworms bioaccumulate PFAS through exposure to porewater and ingestion of soil. Reduced earthworm growth was observed after 42 days of exposure to PFOS at a concentration of 120 mg/kg (CRC CARE 2017).

6.2 Dose-Response Assessment

The aim of the dose-response assessment is to assess the potential for adverse (and non-adverse) effects associated with increased exposure to a substance as a result of contamination. The dose-response assessment also aims to identify the screening benchmarks and tolerable daily intakes (TDI) which can be used to quantify the potential for adverse effects.

As this HHERA focuses solely on potential risks associated with exposure to PFAS which, as outlined above, are bioaccumulative there is a need to assess potential toxic effects as a result of direct contact as well as from bioaccumulation. Therefore, the dose-response assessment includes selection of screening benchmarks which are used to assess direct toxicity, as well as TDIs which are used to assess the potential for intakes including food sources where bioaccumulation may have occurred.

6.2.1 Screening Benchmarks

CoPC are considered to be those chemicals which are known or suspected to be present at concentrations which may warrant inclusion in the human health and ecological risk assessments. In general, a chemical is selected as a CoPC if it has been reported to be present in environmental media at the site above relevant screening criteria (refer to attached **Table T1** and **Table T2**).

6.2.1.1 Human Health Risk Assessment

The following sources have been referenced during selection of relevant human health screening benchmarks for use in the HHERA:

» HEPA (2018) PFAS National Environmental Management Plan (PFAS NEMP)

» NHMRC (2019) Guidance on Per and Polyfluoroalkyl substances (PFAS) in Recreational Water

It is noted that a water use survey conducted for residents adjacent to the site identified that the town reticulated water supply is the main source of drinking water for residents. Water sources at OLOL Primary School are also derived from the town reticulated water supply, therefore no **consideration** of drinking water exposures relating to surface water or groundwater were warranted at the site or for surrounding receptors.

PFAS		Exposure Scenario	Source/Justification			
Compounds	On-site OLOL School Community	Off-site Residents	Off-site Recreational Receptors			
Soil (mg/kg)						
PFOS + PFHxS	0.009 (1.67)	0.009	1	HEPA (2018) (SSSL)		
PFOA	0.1 (13.35)	0.1	10	HEPA (2018) (SSSL)		
Surface Water (µg/L)						
PFOS + PFHxS	2	2	2	NHMRC (2019)		
PFOA	10	10	10	NHMRC (2019)		

Table 7: Summary of Adopted Human Health Screening Benchmarks

Note: site specific screening levels (SSSL) were derived in the DSI (Nation Partners, 2019a) and have also been considered herein. However, as a conservative approach the HEPA (2018) screening criteria have been adopted for Tier 1 screening purposes.

6.2.1.2 Ecological Risk Assessment

The following sources have been referenced during selection of relevant ecological screening benchmarks:

- » HEPA (2018) PFAS National Environmental Management Plan (PFAS NEMP)
- » Environment and Climate Change Canada (ECCC) 2017. Federal Environmental Quality Guidelines, Perfluorooctane Sulfonate (PFOS). February 2017.

Table 8: Summary of Adopted Ecological Screening Benchmarks

PFAS Compound	Screening Value	Source/Justification					
Soil (direct contact) (mg/kg)							
PFOS	1	HEPA (2018) – Public open space					
	0.01	HEPA (2018) – Residential					
PFOA	10	HEPA (2018) – Public open space					
Soil (dietary exposure resulting	from incidental soil i	ingestion and bioaccumulation) (mg/kg)					
PFOS	0.01 2.2	HEPA (2018) – Residential: Based on ECCC (2017) - Secondary consumers – assumes consumers may ingest PFOS from soil and invertebrates (95% of diet), plants (2.5% of diet) and small mammals (2.5% of diet) ECCC (2017) - Primary consumers (herbivorous mammals) – assumes consumers ingest PFOS from soil and plants (100% of diet)					
Surface Water (µg/L)							
PFOS	0.00023	HEPA (2018) – freshwater 99%species protection value					
	0.13	HEPA (2018) – freshwater 95% species protection value					
PFOA	19	HEPA (2018) – freshwater 99%species protection value					
	220	HEPA (2018) – freshwater 95% species protection value					

6.2.2 Human Health Tolerable Daily Intakes

The following table provides a summary of the published health-based guideline values (HBGV) for PFOS, PFOA, PFHxS and PFHxA which were considered during selection of the tolerable daily intakes (TDI) adopted herein.

Table 9: Summary of Available Health Based Guideline Values

Reference	HBGV	POD	UF	HBGV
PFOS				
UKCOT, 2006	TDI (provisional)	0.03 mg/kg bw/day	100	300 ng/kg bw/day
EFSA, 2008	TDI	0.03 mg/kg bw/day	200	150 ng/kg bw/day
Swedish EPA, 2012	Derived NOAEL (immunotoxicity)	17.8 ng/L	150	0.12 ng/mL serum
Danish EPA, 2015	TDI	0.033 mg/kg bw/day	1230	30 ng/kg bw/day
ATSDR, 2018	MRL	0.000515 mg/kg bw/day	30 (10 mod-factor)	2 ng/kg bw/day
USEPA, 2016	RfD	0.00051 mg/kg bw/day	30	20 ng/kg bw/day
FSANZ, 2017	TDI	0.0006 mg/kg bw/day	30	20 ng/kg bw/day
PFHxS				
UKCOT, 2006	TDI (provisional)	0.03 mg/kg bw/day	200	1.5µg/kg bw/day
EFSA, 2008	TDI	0.03 mg/kg bw/day	200	1.5µg/kg bw/day
Swedish EPA, 2012	Derived NOAEL	150 ng per mL of serum	75	2.0 ng/mL serum
Danish EPA, 2015	Danish EPA, 2015 TDI		30	100 ng/kg bw/day
ATSDR, 2018	MRL	0.0047 mg/kg bw/day	30 (10 mod-factor)	20 ng/kg bw/day
USEPA, 2016	RfD	1.54 x 10 ⁻³ mg/kg bw/day	300	20 ng/kg bw/day
FSANZ, 2017	TDI	0.0049 mg/kg bw/day	30	160 ng/kg bw/day
PFOA				
UKCOT, 2006	TDI (provisional)	0.03 mg/kg bw/day	200	1.5µg/kg bw/day
EFSA, 2008	TDI	0.03 mg/kg bw/day	200	1.5µg/kg bw/day
Swedish EPA, 2012	Derived NOAEL	150 ng per mL of serum	75	2.0 ng/mL serum

Reference	HBGV	POD	UF	HBGV
Danish EPA, 2015	anish EPA, 2015 TDI		30	100 ng/kg bw/day
ATSDR, 2018	MRL	0.000821 mg/kg bw/day	300	3 ng/kg bw/day
USEPA, 2016	RfD	1.54 x 10 ⁻³ mg/kg bw/day	300	20 ng/kg bw/day
FSANZ, 2017	TDI	0.0049 mg/kg bw/day	30	160 ng/kg bw/day
PFHxA				
Danish EPA, 2015	TDI (hepatic toxicity)	20 mg/kg bw/day	200	100 µg/kg bw/day
	TDI (reproductive toxicity)	100 mg/kg bw/day	200	1,000 µg/kg bw/day
ToxConsult (2016b) based on data from Klaunig <i>et al</i> (2015)	NOAEL (renal toxicity)	30 mg/kg bw/day	300	100 µg/kg bw/day

Note:

mg/kg bw/day = Milligrams per kilogram body weight per day

µg = micrograms

ng = nanograms

TDI = Tolerable daily intake

NOAEL = no observable adverse effect level

MRL = minimal risk level

POD = point of departure

UF = uncertainty factor

The following table provides a summary of the adopted human health tolerable daily intakes (TDIs) along with sources and the details of TDI calculation.

Table 10: Adopted Human Health Tolerable Daily Intakes

Analyte	Adopted Oral TDI (mg/kg bw/day)	Source	Discussion of Derivation
PFOS	0.00002	FSANZ (2017)	Point of Departure (POD): a Human Equivalent Dose (HED) NOAEL of 0.0006 mg/kg/day was identified based on a study in female rats (Luebkar <i>et al.</i> , 2005). The critical effects considered were parental toxicity (decreased body weight gain and food consumption) and offspring toxicity (reduced body weight and weight gain).
			Uncertainty Factor (UF): an UF of 30 was applied to account for intraspecies variability in human populations and for interspecies differences in toxicodynamics.
		FSANZ (2017)	POD: a HED LOAEL of 0.0049 mg/kg/day based on studies in mice (Lau et al., 2006). The critical effect considered was foetal toxicity.
PFOA	0.00016		UF: an UF of 30 was applied to account for intraspecies variability in human populations and for interspecies differences in toxicodynamics.
PFHxS	0.00002	FSANZ (2017)	FSANZ (2017) PFOS TDI as FSANZ stated that 'there was insufficient toxicological and epidemiological information to justify establishing a TDI for PFHxS. In the absence of a TDI, it is reasonable to conclude that the enHealth (2016) approach of using the TDI for PFOS is likely to be conservative and protective of public health as an interim measure.'
DELLA	0.1	ToxConsult (2016)	In the absence of a TDI from FSANZ (2017), the provisional TDI for PFHxA from ToxConsult (2016) was adopted. This TDI is based on a two-year chronic/carcinogenicity study by Klaunig et al (2015).
PFHxA			POD: a NOAEL of 30 mg/kg/day for female rates based on observations of kidney necrosis.
			UF: an UF of 300 was applied to account for animal and human differences in toxicodynamics and toxicokinetics, human variability in toxicodynamics and human variability in toxicokinetics.

6.2.2.1 Background Exposure

When evaluating potential health effects or deriving health-based investigation levels for chemicals assessed on the basis of a threshold dose-response criteria, total exposure to a given chemical (i.e. the sum of the background exposure and the substance exposure from contaminated media) should not exceed the TDI (enHealth, 2004; ASC NEPM, 2013). As PFAS are in a range of consumer products, it is considered likely that background exposures may occur on an almost daily basis. The exposures that occur as a result of the presence of PFAS in food, water and consumer products are considered to be in addition to potential exposures that may occur on-site or in adjacent off-site environments. The background exposures to PFAS have been accounted for by adjusting the adopted TDIs during exposure modelling.

The review of background sources conducted by ATSDR (2015) indicates that the wider population is exposed to PFAS from a range of sources as a result of the presence of PFAS in surface protection products such as carpet and clothing treatment, and as coating for paper and cardboard packaging. It is also noted that the relatively ubiquitous nature of PFAS in the environment (as a result of releases from around the world) is such that PFAS is likely to be present at low levels in food products.

Assumed background exposures have been adopted based on a literature review conducted by ToxConsult (2016). Estimated background exposures from ToxConsult (2016) were estimated based on measured serum data from the Australian population and the half-lives of PFAS compounds. No background intake data are available for PFHxS and PFHxA therefore no background exposure has been assumed in the modelling for these compounds.

Analyte	Oral TDI (mg/kg bw/day)	Background Intake (mg/kg/day)	Background Intake as a Percentage of the TDI
PFOS	0.00002	0.0000014	7%
PFOA	0.00016	0.0000078	<1%
PFHxS	0.00002	No background assumed	-
PFHxA	0.1	No background assumed	-

Table 11: Adopted Background intake assumptions (ToxConsult, 2016)

6.2.3 Ecological Toxicity Reference Values

No ecological toxicity reference values have been adopted herein as no quantitative or semi-quantitative exposure modelling has been conducted for ecological receptors.

7. Human Health Risk Assessment

▼

7.1 Quantitative Exposure Assessment

The exposure assessment aims to determine the magnitude, frequency, extent and duration of exposure to a contaminant(s) at the site. The information compiled in the CSM was used to determine the numerical representation of likely exposures that may occur at the site.

7.1.1 Exposure Parameters

Human exposure parameters adopted in this risk assessment were obtained from the following recognised Australian and International sources:

- » EnHealth, 2012;
- » ASC NEPM, 2013;
- » USEPA, 1989 and updates to this document

Where specific guidance was not available from the above or other literature sources, conservative estimates for exposure parameters have been adopted. Human exposure parameters adopted in this assessment and their source justification are summarised in **Appendix B**.

SOLUTIONS FOR COMPLEX PROJECTS

Table 12: Summary of Key Exposure Parameters

Parameter	Units	Adult	Reference	Child	Reference
Adults and childr	en that atte	nd OLOL Prin	nary School (on-site)		
Body weight	kg	70	NEPC (2013)	24	The average body weight of children aged 4 to <8 years old as listed in the enHealth (2012) exposure factors guide has been adopted as children who attend the primary school will be 5 years old (or older).
Exposure duration	yr	30	Assumes teachers may work at the same school for up to 30 years.	8	It is assumed that children will attend the school from kindergarten through to grade six plus the potential for a child to repeat up to one year of schooling.
Exposure frequency	days/yr	210	Site-specific assumption – assumes teachers will be at school for 4 x 10 week terms plus some additional days if they attend the school on the weekend or where terms are slightly longer than 10 weeks.	210	Site-specific assumption – assumes children will be at school for 4×10 week terms plus some additional days if they play at the school on the weekend or where terms are slightly longer than 10 weeks.
Averaging time (non- carcinogens)	yr	30	Assumes teachers may work at the same school for up to 30 years.	8	It is assumed that children will attend the school from kindergarten through to grade six plus the potential for a child to repeat up to one year of schooling.
Daily soil ingestion rate	mg/day	50	NEPC (2013)	100	NEPC (2013)
Exposure time (outdoor air)	hrs/day	4	This assumes that teachers may spend up to 4 hours per day in the school yard.	4	This assumes that children may spend up to 4 hours per day in the school yard.
Exposure frequency (outdoor air)	days/yr	210	Site-specific assumption - assumes teachers will be at school for 4 x 10 week terms plus some additional days if they attend the school on the weekend or where terms are slightly longer than 10 weeks.	210	Site-specific assumption - assumes children will be at school for 4×10 week terms plus some additional days if they play at the school on the weekend or where terms are slightly longer than 10 weeks.

Human Health and Ecological Risk Assessment Our Lady of Lourdes Primary School – Tarro NSW

SOLUTIONS FOR COMPLEX PROJECTS

Parameter	Units	Adult	Reference	Child	Reference
Particulate emission factor (outdoor air)	m3/kg	2.60 x 10 ⁰⁷	NEPC (2013) - Recreational User PEF has been adopted.	2.60 x 10 ⁰⁷	NEPC (2013) - Recreational User PEF has been adopted.
Lung Retention Factor (dust inhalation)	unitless	0.375	NEPC (2013)	0.375	NEPC (2013)
Fraction of produce consumed from the site	%	10	NEPC (2013)	10	NEPC (2013)
Consumption Rate - Chicken Eggs	g/day	59	FSANZ (2017) P90 value for people aged 2 years and above. Assuming each serving consists of two eggs (weighing up to 120 g), and that 10% of the eggs consumed were collected from the site, this would be equivalent to 1.5 serves (3 eggs) per month from the site.	36	FSANZ (2017) P90 value for children aged 2-6 Assuming each serving consists of two eggs (weighing up to 120 g total), and that 10% of the eggs consumed were collected from the site, this would be equivalent to 1 serve (2 eggs) per month from the site.
Consumption Rate - Fruit	kg/day	0.14	NEPC (2013)	0.18	NEPC (2013)
Consumption Rate - Green Vegetables	kg/day	0.15	NEPC (2013) assumes 59% of vegetables consumed (260 g/day) are green vegetables	0.055	NEPC (2013) assumes 55% of vegetables consumed (100 g/day) are green vegetables
Consumption Rate - Tuber Vegetables	kg/day	0.060	NEPC (2013) assumes 23% of vegetables consumed (260 g/day) are tuber vegetables	0.028	NEPC (2013) assumes 28% of vegetables consumed (100 g/day) are tuber vegetables

SOLUTIONS FOR COMPLEX PROJECTS

Parameter	Units	Adult	Reference	Child	Reference
Consumption Rate - Root Vegetables	kg/day	0.047	NEPC (2013) assumes 18% of vegetables consumed (260 g/day) are root vegetables	0.017	NEPC (2013) assumes 17% of vegetables consumed (100 g/day) are root vegetables
Residents that in	habit prope	rties adjacent	to the site (off-site)		
Body weight	kg	70	NEPC (2013)	15	NEPC (2013)
Exposure duration	yr	29	NEPC (2013)	6	NEPC (2013)
Exposure frequency	days/yr	365	NEPC (2013)	365	NEPC (2013)
Averaging time (non- carcinogens)	yr	29	NEPC (2013)	6	NEPC (2013)
Daily soil ingestion rate	mg/day	50	NEPC (2013)	100	NEPC (2013)
Exposure time (outdoor air)	hrs/day	4	NEPC (2013)	4	NEPC (2013)
Exposure time (indoor air)	hrs/day	20	NEPC (2013)	20	NEPC (2013)
Particulate emission factor (outdoor air)	m³/kg	2.90 x 10 ¹⁰	NEPC (2013)	2.90 x 10 ¹⁰	NEPC (2013)
Indoor Air Dust Factor	m³/kg	2.60 x 10 ⁰⁷	NEPC (2013)	2.60 x 10 ⁰⁷	NEPC (2013)

SOLUTIONS FOR COMPLEX PROJECTS

Parameter	Units	Adult	Reference	Child	Reference
Lung Retention Factor (dust inhalation)	unitless	0.375	NEPC (2013)	0.375	NEPC (2013)
Fraction of produce consumed from the site	%	10	NEPC (2013)	10	NEPC (2013)
Consumption Rate - Fruit	kg/day	0.14	NEPC (2013)	0.18	NEPC (2013)
Consumption Rate - Green Vegetables	kg/day	0.15	NEPC (2013) assumes 59% of vegetables consumed (260 g/day) are green vegetables	0.055	NEPC (2013) assumes 55% of vegetables consumed (100 g/day) are green vegetables
Consumption Rate - Tuber Vegetables	kg/day	0.060	NEPC (2013) assumes 23% of vegetables consumed (260 g/day) are tuber vegetables	0.028	NEPC (2013) assumes 28% of vegetables consumed (100 g/day) are tuber vegetables
Consumption Rate - Root Vegetables	kg/day	0.047	NEPC (2013) assumes 18% of vegetables consumed (260 g/day) are root vegetables	0.017	NEPC (2013) assumes 17% of vegetables consumed (100 g/day) are root vegetables
Recreational rece	eptors that u	ise Tarro Res	erve		
Body weight	kg	70	NEPC (2013)	15	NEPC (2013)
Exposure duration	yr	29	NEPC (2013)	6	NEPC (2013)
Averaging time (non- carcinogens)	yr	29	NEPC (2013)	6	NEPC (2013)

Human Health and Ecological Risk Assessment Our Lady of Lourdes Primary School – Tarro NSW

SOLUTIONS FOR COMPLEX PROJECTS

Parameter	Units	Adult	Reference	Child	Reference
Incidental ingestion rate	L/day	0.05	enHealth (2012) suggest the use of an average incidental water ingestion rate for adults of 25 mL/hr, the adopted ingestion rate assumes receptors will be conducting recreational activities at Tarro Reserve for up to two hours per day	0.1	enHealth (2012) suggest the use of an average incidental water ingestion rate of 50 mL/hr for children the adopted ingestion rate assumes receptors will be conducting recreational activities at Tarro Reserve for up to two hours per day
Exposure frequency for incidental water ingestion	days/yr	52	Professional judgement - assumes recreational receptors will conduct recreational activities at Tarro Reserve one day per week, or two days per week for half a year	52	Professional judgement - assumes recreational receptors will conduct recreational activities at Tarro Reserve one day per week, or two days per week for half a year

7.1.2 Exposure Point Concentration

A key element of the risk assessment process is estimation of the concentration of site-derived contaminant that identified receptors may be exposed to. This concentration is termed the exposure point concentration (EPC) and is selected to represent the best estimation of average exposures to contamination in environmental media at the point of exposure. Typically, an individual receptor is assumed to be equally exposed to media within all portions of the exposure unit over the time frame of the risk assessment.

For the purposes of the current HHERA, and to account for potential uncertainty associated with human behaviours, it has been assumed that receptors will be exposed to the maximum reported concentration in each environmental media for the duration of the assumed exposure period. It is more likely that receptors will be exposed to a lower concentration, however a conservative approach was considered appropriate at this stage.

SOLUTIONS FOR COMPLEX PROJECTS

Table 13: Summary of Exposure Point Concentrations

Analyte	Adults and children that attend OLOL Primary School (on-site)	Residents that inhabit properties adjacent to the Site (off-site)	Recreational receptors that use Tarro Reserve	Comments
Soil (mg/kg)				
PFOS	2.5	0.15	N/A	The maximum reported concentration in surficial
PFHxS	0.078	0.005	N/A	soils (0-0.4 m bgl) has been adopted as the exposure point concentration to provide a
PFOA	0.32	0.009	N/A	conservative indication of potential risks associated
PFHxA	0.073	0.005	N/A	with soil exposure pathways.
Surface Water (mg/L)				
PFOS	N/A	N/A	0.0012	The maximum reported concentration in off-site
PFHxS	N/A	N/A	0.00004	surface water has been adopted as the exposure point concentration to provide a conservative
PFOA	N/A	N/A	0.00038	indication of potential risks associated with surface
PFHxA	N/A	N/A	0.00016	water exposure pathways.

Note:

N/A – no exposure point concentration has been adopted as no SPR linkage has been identified for these receptors.

7.1.3 Estimation of Chemical Intakes

Chemical intakes (doses) or adjusted exposure air concentrations (for assessment of inhalation exposure) relevant to the assessment of exposures to PFAS by relevant receptors and pathways are detailed in **Appendix B** and were estimated using the equations detailed below (primarily based on USEPA, 1989 algorithms as adopted by the ASC NEPM).

Incidental ingestion of soil

The following methodology was applied to estimate risks to human health as a result of PFAS exposure through the incidental ingestion of contaminated soil and dust during everyday activities. This is an important exposure pathway for non-volatile chemicals.

$$CDI_{ing,s} = \frac{C_s * IngR_s * FI * B * EF * ED * CF}{365 \frac{days}{year} * AT * BW}$$

Equation 1

Where:

CDI _{ing,s}	= Chronic Daily Intake via incidental soil ingestion (mg/kg/day)
Cs	= Chemical Concentration in soil (mg/kg)
IngRs	= Ingestion Rate via incidental soil ingestion (mg/day)
В	= Bioavailability
EF	= Exposure Frequency (days/year)
ED	= Exposure Duration (years)
FI	= Fraction ingested from contaminated source (unitless)
CF	= Unit conversion factor (kg/10 ⁶ mg)
AT	= Averaging Time (years)
	= 70 years for non-threshold carcinogens
	= ED for chemicals assessed based on threshold effects
BW	= Body weight (kg)

Inhalation of dust

The following methodology was applied to estimate risks to human health as a result of PFAS exposure through the inhalation of particulates in the air. It is assumed that all particulates are small enough to penetrate deeply into the lungs and that the particulate air exposure point concentrations have been estimated as inspirable particulate matter (PM_{10}) dust concentrations.

$$EC_{inh} = \frac{C_a * RF * ET * B * EF * ED}{AT * 365 \frac{days}{year} * 24 \frac{hours}{day}}$$

Equation 2

Where:

ECinh	= Exposure Adjusted Air Concentration (mg/m ³)
Ca	= Chemical Concentration in Air (mg/m ³)
RF	= Lung retention factor relevant to the inhalation of dust and includes consideration of a deposition fraction and ciliary clearance
ET	= Exposure Time (hours/day)
В	= Bioavailability
EF	= Exposure frequency (days/year)
ED	= Exposure duration (years)
AT	= Averaging time (years)
	= ED for threshold chemicals

Note: When assessing outdoor inhalation of particulates, the chemical concentration in outdoor airborne particulates ($C_{a,out}$) is calculated as:

$$C_{a,out} = \frac{C_s}{PEF}$$

Equation 3

A significant portion (50%) of indoor dust can be attributed to soil that has been tracked in from the outdoors. The indoor dust transport factor (TF) plays a role in the chemical concentration of indoor airborne particulates, as shown in Equation 4 below.

$$C_{a,in} = \frac{C_s}{PEF} * TF$$

Equation 4

Incidental ingestion of water during primary contact recreation (e.g. swimming)

The following methodology was applied to estimate risks to human health as a result of PFAS exposure through incidental water ingestion during primary contact recreation (e.g. swimming). This equation has been used to assess exposures as a result of incidental ingestion of water during swimming in the waterbody within Tarro Reserve.

$$CDI_{ing,w} = \frac{C_w * IngR_w * ET * B * FI * EF * ED}{365 \frac{days}{year} * AT * BW}$$

Equation 5

Where:

CDI _{ing,w}	= Chronic Daily Intake (incidental) of surface water (mg/kg/day)
Cw	= Chemical Concentration in surface water (mg/L)
IngR _w	= Incidental ingestion Rate for surface water (L/day)
	= the duration of swimming (hours/day) multiplied by the hourly ingestion rate (L/hour)
ET	= Exposure time, i.e. the duration of swimming (hours/day)
В	= Bioavailability
EF	= Exposure Frequency (days/year)
ED	= Exposure Duration (years)
FI	= Fraction ingested from contaminated source (unitless)
AT	= Averaging Time (years)
	= 70 years for non-threshold carcinogens
	= ED for chemicals assessed based on threshold effects
BW	= Body weight (kg)

It is noted that the exposure parameters presented in **Appendix B** do not include a specific exposure time line item, however the incidental ingestion rate for water (in mL/day) has been multiplied by the assumed exposure time and thus a total surface water ingestion volume has been included in the modelling.

Ingestion of Home Grown Produce (eggs, fruit and vegetables)

The following methodology was applied to estimate risks to human health as a result of PFAS exposure through the ingestion of home grown produce including chicken eggs, fruits and vegetables.

$$CDI_{ing,p} = \frac{C_{p} * IngR_{p} * FI * EF * ED * CF}{365 \frac{days}{year} * AT * BW}$$

Equation 6

Where:

CDI _{ing,p}	= Chronic Daily Intake of produce (mg/kg/day)
Cp	= Chemical Concentration in produce (mg/kg)
IngR _p	= Ingestion Rate of produce (mg/day)
EF	= Exposure Frequency (days/year)
ED	= Exposure Duration (years)
FI	= Fraction ingested from contaminated source (unitless)
CF	= Unit conversion factor (kg/10 ⁶ mg)
AT	= Averaging Time (years)
	= 70 years for non-threshold carcinogens
	= ED for chemicals assessed based on threshold effects
BW	= Body weight (kg)

Due to the limited number of produce samples collected from on-site and surrounding residential gardens, and the absence of detectable concentrations of PFOS, PFOA, PFHxS, and PFHxA in the biota samples collected (**Table T3**), PFAS intake associated with ingestion of home grown produce has been modelled based on the below equations:

Concentration in Eggs (adopted from US EPA, 2005)

$$C_{egg} = \frac{\left[\sum (F_i * Q_{pi} * P_i) + (Q_s * C_s * B_s) + (Q_w * C_w)\right] * TF}{LR * E_w}$$

Equation 7

Where:

C _{egg}	= Concentration of PFAS in eggs (mg/kg)
Fi	= Fraction of plant type grown on contaminated soil and ingested by the animal (chicken) (unitless). Assumes that chickens may consume plant material grown on the site as a portion of their diet.
Q _{pi}	= Quantity of plant type eaten by the animal each day (kg/day)
Pi	= Concentration of PFAS in plant type eaten by the animal (chicken) (mg/kg)
Qs	= Quantity of soil eaten by the animal (chicken) (kg/day)
Cs	= Concentration in soil over the exposure duration (mg/kg)

Human Health and Ecological Risk Assessment Our Lady of Lourdes Primary School – Tarro NSW

Bs	= Soil bioavailability factor (unitless)
Qw	= Quantity of water (L)
Cw	= Concentration in water over the exposure duration (mg/L)
TF	= Transfer factor into eggs (based on study by Kowalczyk 2014), chemical specific constant.
LR	= Laying rate – average number of eggs laid per day (assumes chickens lay one egg up to 5 times per week)
Ew	= Average weight of edible portion of egg (kg)

Note that it has been assumed that chickens housed on the site would consume tap water or rain water that does not contain detectable concentrations of PFAS. Thus, the drinking water exposure pathway has not been assessed for chickens at the site.

Parameters	Units	Value	Reference/Justification
Fraction of plant type grown on contaminated soil and ingested by the animal (chicken)	unitless	1	Professional judgement. Assumed 100% from source area
Quantity of plant type eaten by the animal each day	kg DW plant/day	0.105	Professional judgement, based on information provided by NSW department of agriculture (<u>https://www.dpi.nsw.gov.au/animals-and-</u> <u>livestock/poultry-and-birds/poultry-planning-and-</u> <u>keeping/planning-for-poultry-development/bpm</u>)
Quantity of soil eaten by the animal	kg/day	0.0105	Professional judgement. Assumes 10% of feed quantity may be made up of soil
Laying Rate	eggs/day	0.9	Professional judgement.
Average weight of edible portion of the egg	kg	0.0563	Scolexia (2017)
Eggs Transfer Factor – PFOS	unitless	1	These values have been adopted from a report
Egg Transfer Factor – PFOA	unitless	0.46	conducted by Scolexia/AECOM (2017). This study investigated PFAS uptake from drinking water into
Egg Transfer Factor – PFHxS	unitless	0.69	chicken eggs, however in the absence of soil-chicken- egg transfer values or data these transfer factors are considered to provide a conservative approach to
Egg Transfer Factor – PFHxA	unitless	0.005	estimating chicken egg concentrations.

Table 14: Chicken Egg Transfer Factor Parameters

Plant Uptake Factor (ASC NEPM 2013)

 $IF_{PLANT} = ([CF_{tuber} * C_{tuber}] + [CF_{root} * C_{root}] + [CF_{green} * C_{green}] + [CF_{gruit} * C_{fruit}])$

Equation 8

Where:

IF _{plant}	 Plant Intake factor calculated for the consumption of homegrown produce (kg/day)
CFx	 Plant concentration factors relevant for produce type (x) (chemical- specific) (mg/kg produce to mg/kg soil)
Cx	= Consumption rate of each produce type (x) (kg/day)

This approach has been validated against the reported concentrations in plant samples collected from the site and has been identified to result in conservative plant PFAS concentrations. This approach is therefore considered appropriate given the uncertainty of future PFAS concentrations in home grown produce.

7.2 Risk Characterisation – Quantitative Modelling Outcomes

Risk characterisation is the final stage of the risk assessment process. The risk characterisation aims to summarise and integrate information from the data collection, exposure and toxicity assessment stages of risk assessment to identify the overall potential for unacceptable risks in the context of the CSM. Risk characterisation, as outlined in the ASC NEPM (2013) is comprised of three steps: risk estimation, risk evaluation and sensitivity/uncertainty analysis. The following sections reflect these three steps in the risk characterisation undertaken as part of the current HHRA.

7.2.1 Methodology

The following methodology was applied to estimate risks to human health as a result of PFAS exposure. As PFAS are considered non-carcinogenic the risks associated with exposure to these compounds is estimated using a threshold approach as follows:

$$HQ = EC_{inh}$$
Equation 10
RfC - background

Where:

HQ = Hazard Quotient (unitless)

CDIt = Chronic Daily Intake (calculated based on threshold averaging time, mg/kg/day)

TDI = Tolerable Daily Intake (mg/kg/day) – adjusted for background intake

EC_{inh} = Exposure adjusted air concentration (mg/m³)

RfC = Tolerable Concentration in air (mg/m³) – adjusted for background intake

A potentially unacceptable chemical intake/exposure is indicated if the exposure level exceeds the TDI or RfC (i.e. if the hazard quotient is greater than 1).

To assess the overall potential for adverse health effects posed by exposure to multiple PFAS, the hazard quotient for each individual PFAS (for which a TDI was available) and exposure pathway relevant to a receptor was summed. The resulting sum is referred to as the hazard index (HI), and is calculated using the following equation.

$$HI = \sum_{i=1,j=1}^{n} HQ_{i,j}$$

Equation 11

Where:

HI = Hazard Index (unitless)

HQ_{i,j} = Hazard Quotient for pathway *i* and chemical *j* (unitless)

N = Number of chemicals and/or pathways relevant to land use scenario

If the HI is less than one, the cumulative exposure to the CoPC is considered unlikely to result in adverse effects (i.e. unacceptable risk). If the sum is greater than one, a more detailed and critical evaluation of the

hazards may be required, or appropriate risk management measures at the site may need to be implemented.

7.2.2 Risk Estimate

Table 15 provides a breakdown of the exposure pathway hazard quotients that have been factored into the final hazard quotient for each receptor group.

Exposure Pathway		children that L Primary	Residents that inhabit properties adjacent to the site (off-site)		Recreational receptors that use Tarro Reserve (off-site)	
	Adults	Children	Adults	Children	Adults	Children
Incidental Ingestion of Soil	0.06	0.4	0.006	0.06	-	-
Incidental Ingestion of Surface Water	-	-	-	-	0.008	0.08
Inhalation of soil derived dust in indoor air	0.00006	0.00006	0.00003	0.00003	-	-
Inhalation of soil derived dust in outdoor air	0.00006	0.00006	0.000000005	0.000000005	-	-
Ingestion of home grown produce (fruits and vegetables)	0.00002	0.00006	0.000002	0.000009	-	-
Ingestion of chicken eggs	13	23	-	-	-	-

Table 15: Summary of Exposure Pathways Contributing to Hazard Indices for Each Receptor Group

A summary of the calculated reasonable maximum threshold risks (hazard indices) is presented in **Table 16** below.

Estimated hazard indices based on conservative exposure assumptions for all receptors (on-site and off-site) were below the adopted acceptable hazard index of 1, except for the potential future use of OLOL Primary School inclusive of chicken egg consumption. These estimated risk levels indicate that risks are low and acceptable for receptors and exposure pathways assessed, except for potential future chicken egg consumption at OLOL Primary School.

nation partners				SOLUTIONS FOR COMPLEX PROJECTS
--------------------	--	--	--	-----------------------------------

Table 16: Summary of Estimated Health Risks

Receptor	Adults and children that attend OLOL Primary School (on-site) - Current	Adults and children that attend OLOL Primary School (on-site) – Potential Future Increased Produce Consumption, Excluding Chicken Egg Consumption	Adults and children that attend OLOL Primary School (on-site) – Potential Future Including Chicken Egg Consumption	Residents that inhabit properties adjacent to the site (off-site) - Current	Recreational receptors that use Tarro Reserve (off- site) - Current
Adult	0.06	0.06	13	0.006	0.008
Child	0.4	0.4	23	0.06	0.08

Note: Values below the hazard index of 1 indicate that human health risks are low and acceptable.

7.2.3 Sensitivity Analysis

The risk estimates outlined in **Section 7.2.2** have been calculated using a range of exposure assumptions that have been adopted based on our current understanding of site conditions and potential future scenarios that may occur at the site. A number of conservative assumptions have been adopted to account for the uncertainty in the data and the uncertainty with regard to actual exposures under future conditions at the site. The cumulative effect of adopting multiple 'reasonable maximum' exposure assumptions can be an overestimation of actual risks. A sensitivity analysis for the key exposure assumptions is presented in **Table 17**. Overall, this analysis indicates that the risk estimates are likely to overestimate risks, however, this overestimation is considered reasonable given the sensitivity of the school community and the uncertainties surrounding future plans to keep chickens and expand produce gardens for consumption by the school community.

Exposure Parameter	Value Adopted in HHRA	Range of Possible Values	Potential impact on the risk conclusions
Exposure point concentration - soil	2.5 mg/kg	0.007 – 2.5 mg/kg 0.6 mg/kg (average) 0.79 mg/kg (95% upper confidence limit [UCL] – gamma distribution)	Adopting an average of 95% UCL concentration as the EPC would result in a lower estimation of risk to on-site receptors. However, the maximum on-site soil concentration was adopted to assess on-site exposures to account for the potential variability in soil concentrations, and uncertainties in behaviour of the children at the site including: » The school is understood to cater for children with special needs who may have behaviours that result in increased interactions with soil; or » Where children prefer to play in a particular area of the playground more often and where elevated PFAS concentrations may be present.

Table 17: Sensitivity Analysis Summary

Exposure Parameter	Value Adopted in HHRA	Range of Possible Values	Potential impact on the risk conclusions
Fraction of produce consumed from the site	10%	0 – 100%	It has been assumed in the HHRA that people in the school community may consume up to 10% of their dietary fresh produce from the site. This is in line with assumptions in the ASC NEPM about the fraction of produce that residents may consume from their gardens.
			The size of vegetables gardens and the number of chickens that may be housed at the site in the future is currently unclear, therefore a conservative approach to consumption of produce from the site was adopted.
			Assuming a lower proportion of home grown produce is consumed from the site results in a lower estimate of risks, however, would not result in a change in the conclusions of the HHRA.

Exposure Parameter	Value Adopted in HHRA	Range of Possible Values	Potential impact on the risk conclusions
Fraction of food obtained from the site - chickens	1	0-1	It has been assumed that 100% of the food consumed by chickens that may be housed at the site would be sourced from plants grown at the site. It is understood that where chickens are kept at the site, their diet is likely to be supplemented by either grains or food scraps sourced from off-site or commercial suppliers. However, as this is a theoretical future scenario, it is unclear what proportion of food the chickens would obtain from the site, and what would be supplemented from commercial grains or food scraps. In addition, as soil invertebrates have not been sampled at the site it is unclear what concentrations would be present in soil invertebrates consumed by chickens. Adopting a lower proportion of food/plants obtained from the site would reduce the risk estimate. However, a change in this assumption on its own would not change the HHRA conclusions with regard to this exposure scenario.

Exposure Parameter	Value Adopted in HHRA	Range of Possible Values	Potential impact on the risk conclusions
Cumulative result of adjusti	ng the above facto	rs on the risk outcomes	If each of the above listed variables were reduced to assume reasonable average exposures (e.g. soil EPC = 0.79 mg/kg; produce consumed from the site = 5%; and chicken feed obtained from the site = 50%) the risk estimates would be reduced, however, the HHRA conclusions would remain the same.
			The adoption of a number of conservative exposure assumptions may result in overestimation of risks to receptors as a result of exposure to PFOS, PFHxS and PFOA. However, it is known that there are a range of PFAS compounds for which either no toxicity data is available, or no laboratory analysis can be undertaken at this time. Therefore, it is considered appropriate to adopt conservative assumptions, especially where adopting less conservative assumptions is unlikely to change the risk conclusions.

7.2.4 Risk Evaluation

The quantification of risks to human health presented in this report has considered a range of issues that are associated with uncertainties inherent in the site-specific data, toxicological data and assumptions adopted. A number of these uncertainties and issues warrant consideration in the interpretation of the risk estimates. These include:

- » The data limitations identified to impact on the outcomes of the risk assessment. It is noted that although data limitations exist, none of the identified data limitations are considered to result in significant uncertainty in the risk assessment and therefore the risk estimates are considered appropriate with consideration of these data limitations.
- » Where a number of conservative assumptions are adopted during risk modelling there is potential to overestimation of exposures. However, there is also potential for assumptions to result in underestimation of exposures. This is further evaluated in the uncertainty assessment (Section 7.2.5). The outcomes of the uncertainty assessment indicate that the assumptions adopted in the current risk assessment are appropriate for the level of exposure likely to occur at and surrounding the site.

As noted in **Section 5.3**, there are a range of PFAS reported in soil, groundwater and surface water for which no toxicity values are available. Therefore PFOS, PFOA, PFHxS and PFHxA have been used as indicator compounds to assess risks to identified receptors. Based on the data presented in **Section 5.3**, these four compounds make up over 50% of the PFAS concentrations in all environmental media sampled.

The estimated HI for all receptors, excluding potential future chicken egg consumption, assessed in the HHRA, based on a set of reasonable maximum exposure assumptions, provides a margin of safety of greater than 0.5 (>50% of the target HI of 1) therefore it is considered reasonable to assume that total PFAS exposures for identified receptors assessed herein are likely to be low and acceptable in both on-site and offsite areas under current land use conditions. Evaluation of future chicken egg consumptions indicates that there is potential for unacceptable risks if eggs collected from chickens raised within the investigation area of the site were consumed in the future.

7.2.5 Uncertainty Assessment

The interpretation of risks to human receptors of the site must take into consideration the uncertainty in the data and the data limitations identified (**Section 4.4**). **Table 14** presents a summary of the uncertainties in the HHRA and the likely impact on the outcomes of this assessment.

Table 14: Summary of Key Uncertainties Source of Uncertainty	Likely Impact on the HHRA Outcomes
Limited number of surface water (temporal sampling) and biota samples.	The maximum reported PFAS concentrations in soil and surface water have been adopted herein to estimate potential exposures. In addition, the maximum reported soil concentrations have been used to model potential uptake into chicken eggs and plants. These adopted reasonable maximum assumptions are considered likely to overestimate risks associated with PFAS exposure, and therefore provide a reasonable margin of safety in the risk outcomes.
Exposure frequency and exposure time assumptions	A number of assumptions have been made about the amount of time receptors may be exposed to site-derived PFAS in on- site and off-site areas. Assumptions have also been adopted with regard to the frequency of exposure. The exposure assumptions have generally been adopted to represent reasonable average exposures. However, there is potential for a small proportion of people to be exposed more or less frequently than assumed. Overall the exposure parameters are considered to result in the potential for overestimation of risks to the majority of receptors.

8. Ecological Risk Assessment

•

The following sections provide details of the assessments undertaken to characterise the potential for unacceptable risks to ecological receptors which may inhabit the site and surrounding environments.

8.1 Ecological Site Setting

The site itself contains areas of highly modified gardens and open grassed spaces designed to enable the children that attend OLOL to play during break times and undertake gardening activities as part of the school curriculum. As such, the site provides very limited natural habitat for native flora and fauna.

The area directly surrounding the site consists of roadways and residential and commercial properties. A number of the residential properties have large garden areas that are used as open grassed spaces or for maintained garden beds that contain either ornamental plants or home grown produce. These highly modified environments contain limited habitat for native flora and fauna.

The site is located approximately 130 m from the south eastern corner of Tarro Reserve, this reserve area consists of maintained sporting fields, open grassed spaces and a freshwater waterbody that is used primarily as a stormwater retention facility where stormwater from the area discharges during storm events. This area provides a limited amount of terrestrial habitat for native flora and fauna. However, the waterbody provides habitat for aquatic biota and birds (e.g. ducks, ibis and other wading birds) that forage on aquatic plants and animals.

As outlined in **Section 5.1.4**, a disturbed ephemeral freshwater wetland area, locally referred to as Tarro Swamp, is located approximately 500 m north of the site (to the north of Tarro Reserve and the stormwater retention lake). It is understood that this wetland area drains to a small waterway called Purgatory Creek approximately 800 m from the site. Purgatory Creek discharges to the Hunter River approximately 2 km east of the site.

The Hunter River flows into the Hunter Estuary Wetlands Ramsar site located approximately 3.5 km southeast of the site. The Hunter Estuary Wetlands provide an abundance of habitat and foraging opportunities of local and migratory birds.

A search of the Environment Protection and Biodiversity Conservation (EPBC) Act protected matters report (using the Protected Matters Search Tool (PMST)), with a 5 km buffer around the site identified the following:

- » One wetland of international importance (located within the Hunter Estuary Wetlands Ramsar site);
- » Four threatened ecological communities (Central Hunter Valley eucalypt forest and woodland; Coastal Swamp Oak Forest of NSW and SE QLD; Lowland Rainforest; and Subtropical and Temperate Coastal Saltmarsh);
- » 65 threatened species; and
- » 55 migratory species.

Based on the information provided in the PMST report (**Appendix C**), and information downloaded from the Atlas of Living Australia (<u>https://spatial.ala.org.au/#</u>) it is considered likely that the majority of species that inhabit the site and surrounding areas are urban waterbird species such as Ibis, duck species (e.g. Pacific Black Duck, Wandering Whistling Duck, Australian Wood Duck) and Heron. A number of terrestrial birds (e.g. Myna bird species, Cockatoo, parrot and lorikeet species) and birds of prey (e.g. Kite species, Goshawks, Falcon) have been sighted in the area, however it is considered likely that these species have a large foraging range due to the limited natural habitat for prey species found in the area directly surrounding the site and within Tarro Reserve. Terrestrial and aquatic species have also been reported to be present (e.g.

snake species, frog species and insect species) however these would provide a limited resource for native animals, therefore foraging would need to occur over a wide range in the area surrounding the site. Data obtained from Atlas of Living Australia (<u>https://spatial.ala.org.au/#</u>) and observations and information gathered during the DSI supports the assumption that it is unlikely that any of the threatened ecological communities are present within a 1 km radius of the site. In addition, due to the highly modified nature of the site and the area surrounding the site, it is considered unlikely that significant habitat for any of the threatened or migratory species would be present at the site or within nearby areas.

8.2 Exposure Assessment

Based on the above outlined ecological setting for the site, the following ecological receptors are considered to have the potential to be exposed to site-derived PFAS impacts in environmental media:

- » Transient wildlife that visit the site and adjacent nature strip areas to forage;
- » Ecological receptors that inhabit or forage within residential gardens surrounding the site; and
- » Ecological receptors that inhabit or forage within Tarro Reserve.

As noted in **Section 8.1**, there is considered to be limited habitat to support native flora and fauna at the site and within surrounding residential gardens, therefore the key focus of the ecological risk assessment has been on the wildlife that may inhabit or forage within Tarro Reserve, specifically the aquatic habitat areas within Tarro Reserve.

8.3 Tier 1 Screening Assessment

In order to identify the potential for unacceptable ecological risks, the reported PFAS concentrations in environmental media were screened against generic Tier 1 screening criteria as outlined in **Section 6.2.1.2**. The outcomes of the Tier 1 screening identified the following:

- » **Soil** exceedances of the public open space screening criteria for surficial soils in on-site areas only, no exceedances of the public open space screening criteria in off-site locations (nature strips).
- » Surface Water exceedances of the 99% species protection screening value in samples collected on-site and off-site, and exceedance of 95% species protection screening value on-site and in one off-site sample. The one off-site sample that exceeded the 95% species protection value was from stormwater runoff in an earthen stormwater drainage channel. Surface water samples collected to date from within the permanent water body within Tarro Reserve reported PFAS concentrations below the adopted 95% species protection screening value.
- » Home-grown produce (on-site only) PFOS and PFOA were not detected in any of the five produce samples collected from on-site.

The presence of PFAS at concentrations above adopted Tier 1 ecological screening values in environmental media in both on-site and off-site areas indicates that there is a potential for bioaccumulation to be occurring within the local food chain, and therefore for increased risks to ecological receptors that may inhabit or forage within the area on and surrounding the site.

8.4 Qualitative Risk Evaluation

To further evaluate the potential for unacceptable risks to ecological receptors, the assumptions adopted during the derivation of the Tier 1 screening values have been further evaluated. The relevance of these assumptions to the conditions at the site and in surrounding off-site areas, and whether any site-specific adjustments may be applied, has been assessed (**Table 15**).

Review of the assumptions adopted by regulatory agencies during Tier 1 screening criteria derivation identified that there is considerable uncertainty inherent in the assumptions adopted (refer to details provided in **Table 15**). It is therefore difficult to determine a) whether these assumptions are applicable to the site and surrounding areas, and b) whether there is potential for site-specific adjustments to be applied. It was therefore concluded that no adjustments should be applied to Tier 1 screening values given the limited nature of the available data for the site and the uncertainties in the screening values.

Table 15: Ev	aluation of Tier	1 Screening Criteria Derivat	ion
Compound	Tier 1 Screening Criteria	Basis of the Screening Criteria	Relevance to Site Ecological Setting
Soil (mg/kg)		
	1	Due to a lack of data available at the time of preparation of the PFAS NEMP it was decided that the human health	As the derivation of this screening criteria is not based on exposures for ecological receptors it is difficult to determine whether this value is appropriate for screening at the site and in surrounding areas.
		screening criteria for public open space would be adopted as an interim value.	It is noted that this screening criteria was only exceeded in a limited number of surficial soil samples on-site and no exceedances were identified in off-site areas.
PFOS		The screening criteria is	The PFAS NEMP states that 'for intensively developed sites with no secondary consumers and minimal potential for indirect ecological exposure, a higher criterion of up to 0.14 mg/kg may be appropriate.
FF03	0.01	based on dietary exposure to PFAS for secondary consumers (animals that primarily consume insects).	It is noted that there is potential for secondary consumers (primarily birds) to forage in the garden areas of the site, along the nature strips adjacent to the site and within the drainage channels that carry stormwater from the site to the waterbody within Tarro Reserve. Therefore, the more conservative value of 0.01 has been adopted herein.
	2.2	This screening criteria assumes small mammals (body weight = 0.035 kg) will be present at a site that would consume plants as their primary food source, and that incidental	It is considered unlikely that small native mammals would be present at the site and in the surrounding residential areas due to a lack of suitable habitat for these receptors. In addition, the habitat present within Tarro Reserve is limited and therefore is unlikely to

Table 15: Evaluation of Tier 1 Screening Criteria Derivation

Compound	Tier 1 Screening Criteria	Basis of the Screening Criteria	Relevance to Site Ecological Setting
		ingestion of soils impacted with PFAS would occur	support a population of small plant eating mammals.
		during foraging.	The screening criteria derived by ECCC (2017) for small plant eating birds (5.1 mg/kg) may be more appropriate as there is increased potential for small plant eating birds to forage at the site and in surrounding areas. However, as with the mammals, the habitat is limited and therefore such birds would need to forage over large areas to gather sufficient food to sustain them.
			Screening of reported soil concentrations using the 5.1 mg/kg screening criteria (refer to Table T1) indicates that risks are low and acceptable for small plant eating birds that may access the site.
PFOA	10	Due to a lack of data available at the time of preparation of the PFAS NEMP it was decided that the human health	As the derivation of this screening criteria is not based on exposures for ecological receptors it is difficult to determine whether this value is appropriate for screening at the site and in surrounding areas.
		screening criteria for public open space would be adopted as an interim value.	It is noted that no exceedances of this screening criteria were identified in on-site or off-site samples.
Surface Wa	ter (μg/L)		
PFOS	0.00023 (99% species protection) 0.13 (95% species protection)	These screening criteria have been derived using the method outlined in ANZG (2018), and are based on a limited freshwater toxicity dataset that contains a wide range of toxicity values. The 99% species protection value is driven by the inclusion of a single fish toxicity study with a toxicity value that was an order of magnitude below all other toxicity values adopted in the screening criteria derivation.	These screening criteria provide an indication of the potential for unacceptable risks to aquatic receptors. However, given the limited number of suitable freshwater toxicity studies available to date and the considerable variability in the dataset, it is not considered appropriate to adjust these values for site- specific conditions.

Compound	Tier 1 Screening Criteria	Basis of the Screening Criteria	Relevance to Site Ecological Setting
PFOA	19 220	These screening criteria have been derived using the method outlined in ANZG (2018) and are based on a limited freshwater toxicity dataset that contains a wide range of toxicity values.	

8.5 Ecological Risk Characterisation

Given the uncertainty inherent in the Tier 1 screening values and the available data, it was considered appropriate to evaluate the potential for risks to ecological receptors using a qualitative approach whereby multiple lines of evidence are considered as part of an overall weight of evidence. The approach enables an evaluation of the available data, provides an overall picture of the potential for unacceptable risks and enables identification of the key risk driving factors that may inform future management measures.

SOLUTIONS FOR COMPLEX PROJECTS

Table 16: Weight of Evidence Evaluation

Risk Evaluation Question	Line of Evidence	Weight of Evidence
Is there a mechanism for site-derived impacts to migrate away from the main source area and reach ecological habitats (terrestrial and/or aquatic)?	Former fire training activities conducted at the site have been identified to have resulted in PFAS impacts in surficial soils at the site. In addition, it is considered likely that spray drift and/or surface water run-off resulting from fire training may have impacted nearby environments. This is supported by the detection of PFAS in surficial soils within the nature strip environments adjacent to and surrounding the site. PFAS has been reported at concentrations above laboratory limits of reporting in surficial soils on-site, in adjacent nature strip areas, within the stormwater drainage system and within surface water in Tarro Reserve and Tarro Swamp. PFAS has been detected in groundwater beneath the site. Therefore, PFAS impacts are likely to be transported away from the site in groundwater.	Yes – the available evidence suggests that there are multiple transport pathways for PFAS to migrate away from the site and into terrestrial and aquatic habitats on and surrounding the site. The key transport pathway, based on the available data, is considered to be leaching from soil to surface water run-off and discharge of surface water run-off via the local stormwater system to the waterway within Tarro Reserve.

SOLUTIONS FOR COMPLEX PROJECTS

Risk Evaluation Question	Line of Evidence	Weight of Evidence
Are site-derived impacts reported at concentrations above adopted Tier 1 screening values?	As outlined in Section 8.3 samples of soil and surface water collected from on-site and off-site locations have been reported to contain PFOS at concentrations above the adopted Tier 1 screening values.	Yes – exceedances of Tier 1 screening values for 99% species protection in surface water samples collected from off-site. A single exceedance of the 95% species protection value was reported in a surface water sample collected from an earthen drainage channel within Tarro Reserve, however no other exceedances of the 95% species protection value were reported in surface water samples collected from off-site areas. Off-site soil samples were reported to contain PFAS at concentrations below the public open space screening value, indicating low potential risks to terrestrial receptors as a result of direct toxicity.
Do site-derived impacts have the potential to bioaccumulate?	The scientific literature with regard to PFAS shows that some compounds are more bioaccumulative than others.	Yes – PFAS have been demonstrated to bioaccumulate in plants and animals
	The biota samples collected from the raised vegetable garden at the site were not reported to contain detectable concentrations of PFOS, PFOA, PFHxS and PFHxA, however minor detectable concentrations of other PFAS were reported in these samples (refer to Table T3).	
Is there habitat present on-site and in surrounding areas that supports native flora and fauna?	As outlined in Section 8.1 there is limited habitat for native flora and fauna in both on-site and off-site areas. Therefore, the primary ecological populations in the area are likely to consist of more resilient urban species (for example: pigeons, duck, ibis etc.).	Limited – there is minimal habitat to support native flora and fauna populations on-site and in off-site areas.
Human Health and Ecological Risk Assessment		

Our Lady of Lourdes Primary School – Tarro NSW

SOLUTIONS FOR COMPLEX PROJECTS

Risk Evaluation Question	Line of Evidence	Weight of Evidence
Are native flora and fauna populations in the area likely to be impacted by the presence of site-derived impacts?	Given the highly urbanised environment of the site and surrounding area it is considered likely that habitat loss and fragmentation have impacted on sensitive native flora and fauna species. It is therefore difficult to determine whether the presence of PFAS in the environmental media would also be causing population level impacts.	Unlikely – given the highly modified nature of the on-site and off-site environments it is difficult to determine whether site-derived impacts are negatively affecting ecological populations.
Are higher order ecological receptors (predatory birds and mammals) likely to be impacted by site-derived impacts?	The reported presence of PFAS in soil and surface water is such that the ecological species that are present (plants and aquatic biota) are likely to be bioaccumulating PFAS. Where predatory species (e.g. fish-eating birds) may be accessing these areas there is potential for them to be exposed to PFAS at higher concentrations than are present in the environment.	Possibly – given the presence of PFAS in surface water at Tarro Reserve it is considered possible that fish eating birds and mammals may be exposed to PFAS as a result of foraging within Tarro Reserve water bodies.
	Weight of evidence	

Overall, the weight of evidence suggests that:

- » There is limited habitat available for native flora and fauna in both on-site and off-site locations, therefore ecological populations are considered likely to consist primarily of more resilient urban species (e.g. Ibis);
- » The ecological populations that are present (especially those that forage on-site and within Tarro Reserve) are likely to be exposed to site-derived impacts;
- » There is potential for bioaccumulation to be occurring in local ecological populations; and
- » There is potential for PFAS exposures to be posing an unacceptable risk to ecological receptors in some off-site areas (primarily the earthen drains within Tarro Reserve) based on reported exceedances of Tier 1 screening values.

9. Conclusions and Recommendations

On the basis of the available data and the assessment presented herein, and with consideration of identified uncertainties and data limitations the following conclusions are presented:

- » Risks of exposure to PFAS to adults and children that attend OLOL Primary School, and who may consume home grown produce grown on the site (assumed to consist of up to 10% of their diet of fruits and vegetables) have been estimated to be low and acceptable in accordance with nationally published guidance;
- » There is potential for unacceptable risks of exposure to PFAS under future land use conditions where chickens are housed in the DSI investigation area at the site for the purposes of laying eggs for human consumption;
- » Risks of exposure to PFAS to residents (adults and children) that inhabit the properties adjacent to the site, and who consume home grown produce (fruits and vegetables) from their gardens, have been estimated to be low and acceptable in accordance with nationally published guidance;
- » Risks of exposure to PFAS to recreational receptors that use Tarro Reserve for swimming purposes were estimated to be low and acceptable in accordance with nationally published guidance; and
- » Risks of exposure to PFAS to ecological receptors that may forage at the site and in surrounding areas, including within Tarro Reserve, are potentially unacceptable based on comparison of reported concentrations in soil and surface water with Tier 1 screening values. However, given the highly modified nature of the on-site and off-site environments it is considered likely that ecological receptors consist primarily of common urban species that are known to be less sensitive to environmental impacts compared to native species that inhabit less disturbed/modified environments.

Given the above conclusions the following recommendations are provided:

- » Given the potential for PFAS uptake to occur into chicken eggs, it is recommended that chickens are not housed within the investigation area of the site. If chickens are housed on-site in the future, it is recommended that soils in the proposed location be tested to confirm that consumption of chicken eggs would not increase the potential for PFAS exposures.
- » As a precautionary approach it is recommend that wherever possible vegetable gardens should be within raised garden beds. It is noted that this is consistent with the current approach to produce garden configurations at the site.
- » It is recommended that wherever possible, efforts should be made to minimise the potential for PFAS to leach from soils within the source area of the site into groundwater and surface water to minimise the potential for transport of PFAS away from the site.
- » An ongoing monitoring program should be implemented to measure on-site and off-site surface water and groundwater concentrations over time. This will allow an assessment of changes in the potential for PFAS transport and will inform potential future risk management decisions.

10. References

Agency for Toxic Substances and Disease Registry (ATSDR), 2015. Draft Toxicological Profile for Perfluoroalkyls. Agency for Toxic Substances and Disease Registry. August 2015.

ANZG 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia. Available at www.waterguality.gov.au/anz-guidelines

ATSDR (2015) Toxicological Profile for Perfluoroalkyls, Draft for Public Comment.

Danish Environmental Protection Agency (Danish EPA), 2015. Perfluoroalkylated substances: PFOA, PFOS, PFOSA: Evaluation of health hazards and proposal of a health-based quality criterion for drinking water, soil and ground water. Environment project No. 1665, 2015. Danish Ministry of the Environment, Environmental Protection Agency. http://www2.mst.dk/Udgiv/publications/2015/04/978-87-93283-01- 5.pdf

DoEE, 2016. Commonwealth Environmental Management Guidance on Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA). Department of the Environment and Energy, Draft October 2016.

ECCC, 2017. Federal Environmental Quality Guidelines, Perfluorooctane Sulfonate (PFOS). Environment and Climate Change Canada, February 2017.

EFSA, 2008. Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. Scientific Opinion of the Panel on Contaminants in the Food chain. EFSA J 653: 1-131

enHealth (2012) Australian exposure factor guidance – Guidelines for assessing human health risks from environmental hazards

Environmental Health Risk Assessment, Guidelines for Assessing Human Health Risks from Environmental Hazards. Department of Health and Aging, 2012 Update (enHealth, 2012);

Food Standards Australia New Zealand (FSANZ), 2017a. Hazard assessment report – Perfluorooctane sulfonate (PFOS), Perfluorooctanoic acid (PFOA), Perfluorohexane sulfonate (PFHxS), April 2017

FSANZ 2017b, Hazard assessment report - Perfluorooctane sulfonate (PFOS), Perfluorooctanoic acid (PFOA), Perfluorohexane sulfonate (PFHxS), Food Standards Australia and New Zealand.

FSANZ, 2018 - <u>https://www.foodstandards.gov.au/consumer/chemicals/Pages/Perfluorinated-compounds.aspx</u>

HEPA (2018) PFAS National Environmental Management Plan

Nation Partners, 2019a. Detailed Site Investigation Report – PFAS Investigation (DSI). December 2019.

Nation Partners, 2019b. Addendum 1 to Detailed Site Investigation Report – PFAS Investigation. December 2019.

National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) (NEPC, 2013), specifically:

NEPC (1999) National Environmental Protection Measure (Assessment of Site Contamination) (2013 amendment)

NEPC, 2013a. National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013), Schedule B4, Guideline on Site-specific Human Health Risk Assessment Methodology

NEPC, 2013b. National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013), Schedule B5a, Guideline on Ecological Risk Assessment

NHMRC (2008) Guidelines for Managing Risks in Recreational Water

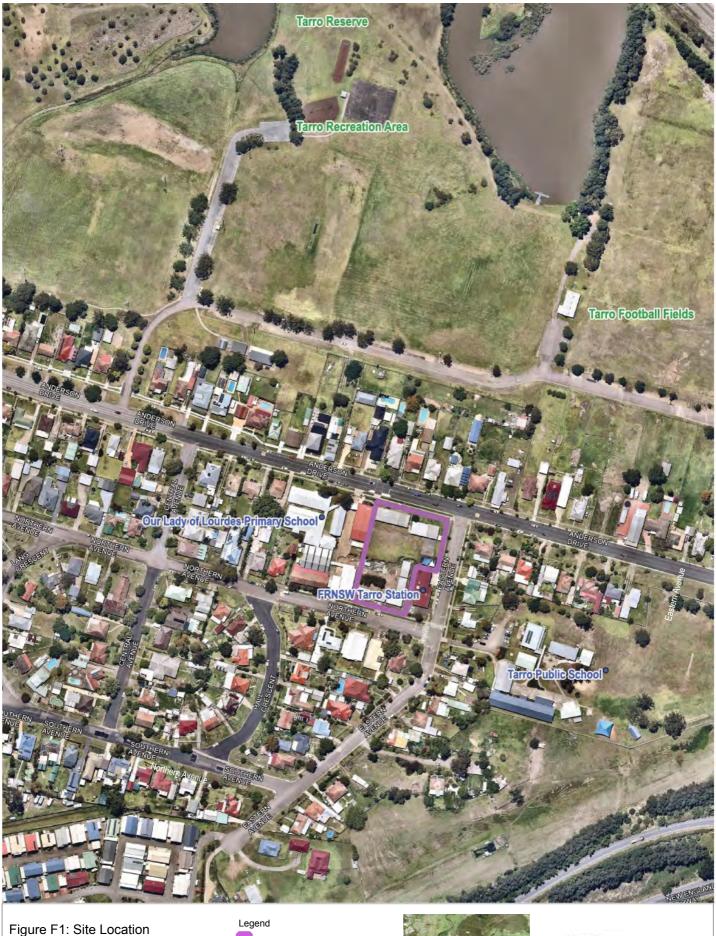
NHMRC and NRMMC (2011) Australian Drinking Water Guidelines

NSW EPA, 2017. Williamtown PFAS Investigations: air monitoring. NSW Environment Protection Authority <u>https://www.epa.nsw.gov.au/-/media/epa/corporate-site/resources/community/williamtown-pfas-investigation-fact-sheet-air-monitoring.pdf</u>

Swedish Environmental Health Protection Agency (Swedish EPA) Report 6513, 2012. Environmental and Health Risk Assessment of Perfluoroalkyalated and Polylfluoroalkylated Substances (PFASs) in Sweden. http://www.naturvardserket.se/Douments/publikationer6400/978-91-620-6513-3.pdf?pid=3822.

ToxConsult, 2016. Toxicity Profiles for the Perfluorinated compounds PFOS, PFOA, 6:2 FTS, 8:2 FTS, prepared for AECOM Australia Pty Ltd, ToxConsult document ToxCR011115-RTF, 22 July 2016.

United Kingdom Committee on Toxicity, 2006. COT Statement on the Tolerable Daily Intake for Perfluorooctanoic Acid. https://cot.food.gov.uk/sites/default/files/cot/cotstatementpfoa200902.pdf


United States Environmental Protection Agency (USEPA), 2016. Health effects support document for perfluorooctane sulfonate (PFOS). EPA 822-R-14-002.

United States Environmental Protection Agency (USEPA). 2016. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA). Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. EPA Document Number: 822-R-16-005. May 2016.

United States Environmental Protection Agency (USEPA). 2016. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS). Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. EPA Document Number: 822-R-16-005. May 2016.

Figures


FRNSW - Human Health and Ecological Risk Assessment (Tarro) NP19039

COPYRIGHT The concepts and information contained in this document are the property of Nation Partners Pty Ltd. Use or copying of this document in whole or in part without the written permission of Nation Partners Pty Ltd does not warrant that this document is definitive nor free of error and does not accept liability for any loss caused or arising from reliance upon information provided herein.

DATA SOURCES 6, 2019 nagery: Ne 0 50 100 m _

Figure F2: Investigation Area

FRNSW - Human Health and Ecological Risk Assessment (Tarro) NP19039

COPYRIGHT The concepts and information contained in this document are the property of Nation Partners Pty Ltd. Use or copying of this document in whole or in part without the written permission of Nation Partners Pty Ltd does not warrant that this document is definitive nor free of error and does not accept liability for any loss caused or anising from reliance upon information provided herein.

Figure F3: Soil Sample Locations

FRNSW - Human Health and Ecological Risk Assessment (Tarro) NP19039

Legend

Investigation Area

GW Well Soil Samples Produce Soil Samples

Soil Sample Locations

10 20 m nation partners

COPYRIGHT The concepts and information contained in this document are the property of Nation Partners Pty Ltd. Use or copying of this document in whole or in part without the written permission of Nation Partners Pty Ltd onstitues an infringement of copyright. Nation Partners Pty Ltd does not warrant that this document is definitive nor free of error and does not accept liability for any loss caused or arising from reliance upon information provided herein.

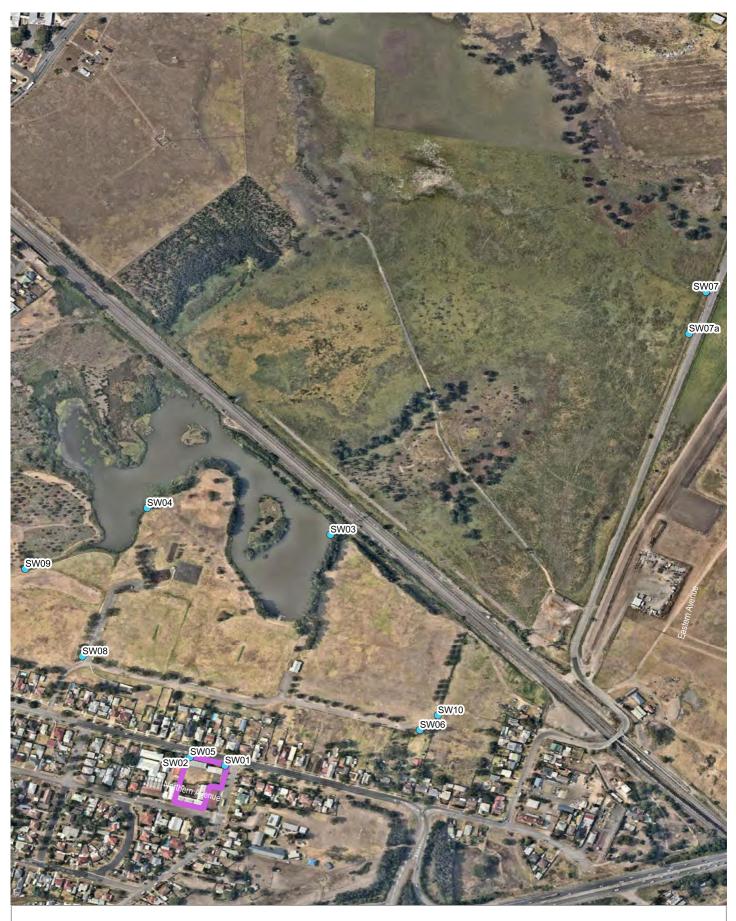


Figure F4: Surface Water Sample Locations

FRNSW - Human Health and Ecological Risk Assessment (Tarro) NP19039

COPYRIGHT The concepts and information contained in this document are the property of Nation Partners Pty Ltd. Use or copying of this document in whole or in part without the written permission of Nation Partners Pty Ltd does not warrant that this document is definitive nor free of error and does not accept liability for any loss caused or arising from reliance upon information provided herein.

200 m 100 A nation partners

DATA SOURCES Imagery: Nearmaps, 2019

Figure F5: Produce Sample Locations

FRNSW - Human Health and Ecological Risk Assessment (Tarro) NP19039

NC Process COPYRIGHT The concepts and information contained in this document are the property of Nation Partners Pty Ltd. Use or copying of this document in whole or in part without the written permission of Nation Partners Pty Ltd does not warrant that this document is definitive nor free of error and does not accept liability for any loss caused or anising from reliance upon information provided herein.

Investigation Area Produce Sample Locations

Tables

Human Health and Ecological Risk Assessment Our Lady of Lourdes Primary School – Tarro NSW

Table T1: Soil Analytical Data

																		PFOS/PFOA					
	Perfluorodecanoic acid (PFDA)	Perfluorohexanoic acid (PFHxA)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	N-Ethyl perfluorooctane sulfonamide (NEtFOSA)	N-ethyl- perfluorooctanesulf onamidoacetic acid (NEtFOSAA)	N- ethylperfluorooctan esulfonamidoethano I (NEtFOSE)	N-Methyl perfluorooctane sulfonamide (NMeFOSA)	N- methylperfluorooct ane sulfonamidoacetic acid (NMeFOSAA)	N- Methylperfluorooct anesulfonamidoetha nol (N-MeFOSE)	Perfluorononanesulf onic acid (PFNS)(trace)	Perfluorobutane sulfonic acid (PFBS)	Perfluorobutanoic acid (PFBA)	Perfluorodecanesulf onic acid (PFDS)	Perfluorododecanoi c acid (PFDoDA)	Perfluoropropanesul fonic acid (PFPrS)	Perfluoroheptane sulfonic acid (PFHpS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	Perfluoroheptanoic acid (PFHpA)	Perfluorohexane sulfonic acid (PFHxS)	Perfluorononanoic acid (PFNA)	Perfluorooctane sulfonamide (PFOSA)	Perfluorooctanesulf onic acid (PFOS)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0003	0.0005	0.0005	0.0003
PFAS NEMP 2018 Table 2 Health Public open space																							
PFAS NEMP 2018 Table 2 Health Residential accessible soil																							
Site-specific screening level (Nation Partners, 2019a)																							
ECCC (2017) Primary consumers																							5.1
PFAS NEMP 2018 Table 3 Interim EDE Public open space																							1
PFAS NEMP 2018 Table 3 Interim EIE Residential																							0.01

Lab Report Number	Field ID	Date	Matrix Type	Location																							
678496	S1-0.2	23/9/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	0.0084	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0057	0.14
678496	S2-0.2	23/9/19	soil	on-site	< 0.005	0.013	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	0.0058	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0061	0.018	0.034	< 0.005	0.44
679939	S3 (0.0-0.2)	30/9/19	soil	on-site	< 0.005	0.0079	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	0.037	0.0052	< 0.005	2.2
679939	S3 (0.4-0.6)	30/9/19	soil	on-site	< 0.005	0.014	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	0.0073	< 0.005	< 0.005	< 0.005	< 0.005	0.0063	< 0.005	< 0.005	0.063	< 0.005	< 0.005	0.28
679939	S5 (0.5-0.7)	30/9/19	soil	on-site	< 0.005	0.061	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	0.031	0.0063	< 0.005	< 0.005	0.01	0.018	< 0.005	0.017	0.2	< 0.005	< 0.005	0.39
679939	S7 (0.0-0.2)	30/9/19	soil	on-site	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.022	< 0.005	< 0.005	0.47
679939	S7 (0.4-0.6)	30/9/19	soil	on-site	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.03	< 0.005	< 0.005	0.05
679939	S9 (0.0-0.2)	30/9/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0068	< 0.005	< 0.005	0.16
680443	S3 (0.2-0.4)	30/9/19	soil	on-site	<0.005	0.015	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.011	< 0.005	0.0056	0.054	< 0.005	< 0.005	0.58
680443	S3 (0.6-0.8)	30/9/19	soil	on-site	< 0.005	0.041	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	0.031	< 0.005	< 0.005	< 0.005	0.0091	0.011	< 0.005	0.013	0.18	< 0.005	< 0.005	0.25
680443	S3 (0.8-1.0)	30/9/19	soil	on-site	< 0.005	0.069	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	0.066	< 0.005	< 0.005	< 0.005	0.021	0.0082	< 0.005	0.016	0.23	< 0.005	< 0.005	0.12
680443	S6 (0.5-0.7)	30/9/19	soil	on-site	< 0.005	0.037	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	0.034	< 0.005	< 0.005	< 0.005	0.011	0.0091	< 0.005	0.008	0.19	< 0.005	< 0.005	0.081
680443	S8 (0.0-0.2)	30/9/19	soil	on-site	< 0.005	0.07	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	<0.005	< 0.01	<0.005	< 0.005	0.013	< 0.005	< 0.005	< 0.005	< 0.005	0.071	< 0.005	0.035	0.32	< 0.005	< 0.005	0.77
680443	S8 (0.4-0.6)	30/9/19	soil	on-site	< 0.005	0.025	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	<0.005	< 0.01	<0.005	< 0.005	0.0083	< 0.005	< 0.005	< 0.005	< 0.005	0.0077	< 0.005	< 0.005	0.04	< 0.005	< 0.005	0.17
680443	S9 (0.4-0.6)	30/9/19	soil	on-site	< 0.005	0.0069	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.022	< 0.005	< 0.005	0.006
680443	S10 (1.0)	30/9/19	soil	on-site	< 0.005	0.046	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	0.017	0.0056	< 0.005	< 0.005	0.0063	< 0.005	< 0.005	0.0052	0.076	< 0.005	< 0.005	0.023
680443	S11 (0.0-0.2)	30/9/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0063	< 0.005	< 0.005	0.0097
680443	S11 (0.4-0.6)	30/9/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0071	< 0.005	< 0.005	< 0.005
680443	S19 (0.0-0.2)	30/9/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.02
680443	S19 (0.4-0.6)	30/9/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
680454	S12 (0.0-0.2)	1/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.01	<0.005	<0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005
680454	S12 (0.2-0.4)	1/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
680454	S13 (0.0-0.2)	1/10/19	soil	on-site	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	<0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0066	< 0.005	< 0.005	0.53
680454	S13 (0.2-0.4)	1/10/19	soil	on-site	< 0.005	0.0071	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0069	< 0.005	< 0.005	0.0092	< 0.005	< 0.005	0.26
680454	S14 (0.0-0.2)	1/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.15
680454	S14 (0.2-0.4)	1/10/19	soil	on-site	< 0.005	0.0067	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0098	< 0.005	< 0.005	0.19
680454	S15 (0.0-0.2)	1/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	<0.005	<0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.012
680454	S15 (0.2-0.4)	1/10/19	soil	on-site	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.01	<0.005	<0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
680454	S16 (0.0-0.2)	1/10/19	soil	on-site	< 0.005	0.0098	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	0.016	< 0.005	0.0058	0.031	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.022	0.014	0.011	0.73
680454	S16 (0.2-0.4)	1/10/19	soil	on-site	< 0.005	0.018	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	0.0058	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0082	0.034	< 0.005	< 0.005	2.2
680454	S17 (0.0-0.2)	1/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.15
680454	S17 (0.2-0.4)	1/10/19	soil	on-site	< 0.005	0.013	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.016	0.0074	< 0.005	0.55
680454	S18 (0.0-0.2)	1/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	0.19
680454	S18 (0.2-0.4)	1/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.01	<0.005	<0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	0.21
680454	S20 (0.0-0.2)	1/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.043
680454	S20 (0.2-0.4)	1/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.01	<0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.04
680454	S21 (0.0-0.2)	1/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	<0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.013
680454	S21 (0.2-0.4)	1/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	<0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.007
680454	S22 (0.0-0.2)	1/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
681409	S16 (0.4-0.6)	1/10/19	soil	on-site	< 0.005	0.043	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	0.0082	0.0077	< 0.005	< 0.005	< 0.005	0.05	< 0.005	0.017	0.096	0.009	< 0.005	5
681409	S16 (0.8-1.0)	1/10/19	soil	on-site	< 0.005	0.14	< 0.005	< 0.005	< 0.005	< 0.01	<0.005	< 0.005	< 0.01	< 0.005	< 0.005	0.053	0.013	< 0.005	<0.005	0.012	0.12	<0.005	0.049	0.6	< 0.005	< 0.005	0.73
681907	S8 (0.8-1.0)	30/9/19	soil	on-site	<0.005	0.045	<0.005	< 0.005	<0.005	< 0.01	<0.005	<0.005	<0.01	<0.005	<0.005	0.018	<0.005	<0.005	<0.005	<0.005	0.014	<0.005	0.02	0.15	<0.005	<0.005	0.35
681907	S17 (0.8-1.0)	1/10/19	soil	on-site	< 0.005	0.0093	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.034	< 0.005	<0.005	0.048
682248	MW01_0.1-0.2	10/10/19	soil	on-site	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
682248	MW02_1.0-1.2	10/10/19	soil	on-site	< 0.005	0.0066	<0.005	< 0.005	<0.005	< 0.01	<0.005	< 0.005	< 0.01	<0.005	< 0.005	0.012	< 0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	0.037	< 0.005	< 0.005	0.011
682248	S16_1.5-1.7	11/10/19	soil	on-site	< 0.005	0.11	< 0.005	< 0.005	<0.005	< 0.01	<0.005	< 0.005	< 0.01	<0.005	< 0.005	0.057	0.0053	< 0.005	< 0.005	0.023	<0.005	<0.005	0.0097	0.16	< 0.005	< 0.005	<0.005
682248	\$16_2.5-2.7	11/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
682248	S23_0.0-0.2	10/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.01	<0.005	< 0.005	<0.01	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
682248	S27_0.05	11/10/19	concrete	on-site	< 0.005	0.073	< 0.005	< 0.005	<0.005	< 0.01	<0.005	< 0.005	< 0.01	< 0.005	< 0.005	0.014	0.0068	< 0.005	< 0.005	0.0076	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005

Table T1: Soil Analytical Data

																		PFOS/PFOA					
	Perfluorodecanoic acid (PFDA)	Perfluorohexanoic acid (PFHxA)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	N-Ethyl perfluorooctane sulfonamide (NEtFOSA)	N-ethyl- perfluorooctanesulf onamidoacetic acid (NEtFOSAA)	N- ethylperfluorooctan esulfonamidoethano I (NEtFOSE)	N-Methyl perfluorooctane sulfonamide (NMeFOSA)	N- methylperfluorooct ane sulfonamidoacetic	N- Methylperfluorooct anesulfonamidoetha nol (N-MeFOSE)	Perfluorononanesulf onic acid (PFNS)(trace)	Perfluorobutane sulfonic acid (PFBS)	Perfluorobutanoic acid (PFBA)	Perfluorodecanesulf onic acid (PFDS)	Perfluorododecanoi c acid (PFDoDA)	Perfluoropropanesul fonic acid (PFPrS)	Perfluoroheptane sulfonic acid (PFHpS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	Perfluoroheptanoic acid (PFHpA)	Perfluorohexane sulfonic acid (PFHxS)	Perfluorononanoic acid (PFNA)	Perfluorooctane sulfonamide (PFOSA)	Perfluorooctanesulf onic acid (PFOS)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0003	0.0005	0.0005	0.0003
PFAS NEMP 2018 Table 2 Health Public open space																							
PFAS NEMP 2018 Table 2 Health Residential accessible soil																							
Site-specific screening level (Nation Partners, 2019a)																							
ECCC (2017) Primary consumers																							5.1
PFAS NEMP 2018 Table 3 Interim EDE Public open space																							1
PFAS NEMP 2018 Table 3 Interim EIE Residential																							0.01

Lab Report Number	Field ID	Date	Matrix Type	Location																							
685397	S9 (0.8-1.0)	30/9/19	soil	on-site	< 0.005	0.011	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	0.0066	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.048	< 0.005	< 0.005	0.0059
685397	\$11 (0.8-1.0)	30/9/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
685397	S12 (0.8-1.0)	30/9/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
685397	\$13 (0.4-0.6)	30/9/19	soil	on-site	< 0.005	0.019	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.013	< 0.005	0.015	0.086	< 0.005	< 0.005	0.088
685397	S13 (0.8-1.0)	30/9/19	soil	on-site	< 0.005	0.063	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	0.015	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.015	0.11	< 0.005	< 0.005	0.017
685397	\$19 (0.8-1.0)	30/9/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
697518	SD02	17/1/20	sediment	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
697518	SD05	17/1/20	sediment	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0054
698668	S28(0.0-0.2)	22/1/20	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.062
698668	\$28(0.2-0.4)	22/1/20	soil	on-site	< 0.005	0.02	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	0.0062	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.027	0.034	< 0.005	< 0.005	0.18
698668	\$29(0.0-0.2)	22/1/20	soil	on-site	< 0.005	0.02	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	0.034	0.011	< 0.005	0.018	< 0.005	< 0.005	0.012	< 0.005	< 0.005	0.062	< 0.005	< 0.005	1.4
698668	\$29(0.2-0.4)	22/1/20	soil	on-site	< 0.005	0.014	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	0.0089	0.0091	< 0.005	< 0.005	< 0.005	< 0.005	0.0068	< 0.005	< 0.005	0.037	< 0.005	< 0.005	0.8
698668	\$30(0.0-0.2)	22/1/20	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0095	< 0.005	< 0.005	0.34
698668	\$30(0.2-0.4)	22/1/20	soil	on-site	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.013	< 0.005	0.0067	0.042	< 0.005	< 0.005	0.53
698668	\$31(0.0-0.2)	22/1/20	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.031
698668	\$31(0.2-0.4)	22/1/20	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
698668	\$32(0.0-0.2)	22/1/20	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0084	< 0.005	< 0.005	0.021	< 0.005	< 0.005	0.98
698668	\$32(0.2-0.4)	22/1/20	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0081	< 0.005	< 0.005	0.024	< 0.005	< 0.005	0.92
698668	\$33(0.0-0.2)	22/1/20	soil	on-site	< 0.005	0.025	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	0.1	< 0.005	0.009	0.15	< 0.005	< 0.005	2.5
698668	S33(0.2-0.4)	22/1/20	soil	on-site	< 0.005	0.014	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	<0.01	< 0.005	0.014	0.015	< 0.005	< 0.005	<0.005	0.005	0.021	< 0.005	< 0.005	0.11	< 0.005	<0.005	2.4
700221	\$29(0.4-0.6)	22/1/20	soil	on-site	< 0.005	0.056	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	0.022	< 0.005	<0.005	< 0.005	0.0061	0.062	< 0.005	0.018	0.22	0.035	<0.005	0.99
700221	\$30(0.4-0.6)	22/1/20	soil	on-site	< 0.005	0.012	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.015	< 0.005	0.0072	0.053	< 0.005	< 0.005	0.49
700221	S33A(0.6-0.8)	22/1/20	soil	on-site	< 0.005	0.059	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	<0.01	< 0.005	<0.005	0.049	< 0.005	< 0.005	< 0.005	0.02	0.055	<0.005	0.016	0.45	< 0.005	<0.005	0.69
701333	S29(0.6-0.8)	22/1/20	soil	on-site	<0.005	0.035	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005	<0.005	0.059	<0.005	<0.005	<0.005	0.011	0.018	< 0.005	0.034	0.38	0.0053	<0.005	0.64
701333	S29(0.8-1.0)	22/1/20	soil	on-site	<0.005	0.05	<0.005	<0.005	<0.005	< 0.01	<0.005	< 0.005	<0.01	< 0.005	<0.005	0.048	<0.005	<0.005	<0.005	0.0099	0.011	< 0.005	0.017	0.17	< 0.005	<0.005	0.22
701333	S30(0.6-0.8)	22/1/20	soil	on-site	<0.005	0.0096	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0058	<0.005	0.0059	0.055	<0.005	<0.005	0.38
703149	FP1 0.0-0.2	20/2/20	soil	off-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.0050	< 0.005	< 0.005	< 0.005	<0.005	<0.005	0.0064
703149	FP2 0.0-0.2	20/2/20	soil	off-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	< 0.005	<0.01	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	0.047
703149	FP3 0.0-0.2	20/2/20	soil	off-site	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.01	< 0.005	<0.005	<0.01	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	0.018
703149	FP4 0.0-0.2	20/2/20	soil	off-site	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	< 0.005	<0.01	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	0.0069
703149	FP5 0.0-0.2	20/2/20	soil	off-site	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.01	< 0.005	< 0.005	<0.01	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	0.021
703149	FP6 0.0-0.2	20/2/20	soil	off-site	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.021
703149	FP7 0.0-0.2	20/2/20	soil	off-site	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	<0.005	<0.01	<0.005	0.012	<0.005	<0.005	0.019	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0087	< 0.005	<0.005	0.11
703149	FP8 0.0-0.2	20/2/20	soil	off-site	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.01	< 0.005	< 0.005	<0.01	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	0.14
703149	FP9 0.0-0.2	20/2/20	soil	off-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	<0.01	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	0.033
703149	FP10 0.0-0.2	20/2/20	soil	off-site	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.01	< 0.005	<0.005	<0.01	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	0.15
703149	FP11 0.0-0.2	20/2/20	soil	off-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	<0.01	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	0.02
703149	FP12 0.0-0.2	20/2/20	soil	off-site	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005
703149	FP13 0.0-0.2	20/2/20	soil	off-site	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005
703149	FP14 0.0-0.2	20/2/20	soil	off-site	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.01	<0.005	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005
703149	FP15 0.0-0.2	20/2/20	soil	off-site	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.01	< 0.005	<0.005	<0.01	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005
703149	FP16 0.0-0.2	20/2/20	soil	off-site	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	<0.01	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005
703149	S16A 0.2-0.4	19/2/20	soil	on-site	< 0.005	0.03	<0.005	<0.005	< 0.005	<0.01	< 0.005	<0.005	<0.01	<0.005	0.015	0.0058	0.0079	< 0.005	<0.005	<0.005	0.0098	< 0.005	0.015	0.063	0.018	<0.005	2.2
703149	S16A_0.4-0.6	19/2/20	soil	on-site	< 0.005	0.032	<0.005	<0.005	< 0.005	<0.01	< 0.005	<0.005	<0.01	<0.005	0.0074	0.0082	0.0078	< 0.005	<0.005	<0.005	0.0050	< 0.005	0.013	0.052	0.018	<0.005	1.9
703149	S16A_0.4-0.8	19/2/20	soil	on-site	<0.005	0.032	<0.005	<0.005	< 0.005	< 0.01	<0.005	<0.005	<0.01	<0.005	0.0074	<0.005	0.0078	0.018	<0.005	< 0.005	<0.005	<0.005	0.013	0.032	0.0097	<0.005	0.58
703149	S16B_0.4-0.6	19/2/20	soil	on-site	<0.005	0.010	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005	<0.005	<0.005	0.0062	< 0.015	<0.005	<0.005	<0.005	<0.005	0.0095	0.022	0.0059	<0.005	0.61
703149	S166_0.4-0.6	19/2/20	soil	on-site	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.0095	0.022	0.0059	<0.005	0.01
703149	S16C_0.2-0.4	19/2/20	soil	on-site	< 0.005	0.011	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	0.0058	0.0038	0.0065	< 0.005	0.17
703149	\$10C_0.4-0.0 \$34_0.0-0.2	19/2/20	soil	on-site	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.01	< 0.005	< 0.005	<0.01	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.0052	<0.005	0.15
703149	S34_0.2-0.4	19/2/20	soil	on-site	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.01	< 0.005	< 0.005	<0.01	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	0.0055	<0.005	<0.005	0.38
703149	TARRO PIT 1	20/2/20	soli	on-site	< 0.005	< 0.005	< 0.005	< 0.005	0.0052	< 0.01	< 0.005	< 0.005	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.0055	<0.005	<0.005	0.27
703149	TARRO PIT 2	20/2/20	sediment	on-site	< 0.005	<0.005	<0.005	<0.005	< 0.0052	<0.01	<0.005	<0.005	<0.01	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	0.018
/ 03143		20/2/20	scament	on-site	NU.003	N0.003	NU.UUJ	NU.003	N0.003	NU.U1	NU.003	NU.003	×0.01	NU.00J	10.005	NU.003	~0.005	NU.005	~0.005	~0.005	NU.005	~0.005	NU.003	NU.003	NU.005	<0.00J	0.034

Table T1: Soil Analytical Data

	Perfluoropentane sulfonic acid (PFPeS)	Perfluoropentanoic acid (PFPeA)	Perfluorotetradecan oic acid (PFTeDA)	Perfluorotridecanoi c acid (PFTrDA)	Perfluoroundecanoi c acid (PFUnDA)	Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	Sum of PFAS	Sum of PFAS (WA DER List)	Sum of PFHxS and PFOS	Sum of US EPA PFAS (PFOS + PFOA)*	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	Perfluorooctanoic acid (PFOA)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0003
PFAS NEMP 2018 Table 2 Health Public open space									1			10
PFAS NEMP 2018 Table 2 Health Residential accessible soil									0.009			0.1
Site-specific screening level (Nation Partners, 2019a)									1.67			13.35
ECCC (2017) Primary consumers												
PFAS NEMP 2018 Table 3 Interim EDE Public open space												10
PFAS NEMP 2018 Table 3 Interim EIE Residential												

Lab Report Number	Field ID	Date	Matrix Type	Location												
678496	S1-0.2	23/9/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.14	0.1541	0.14	0.14	0.14	< 0.01	< 0.005
678496	S2-0.2	23/9/19	soil	on-site	< 0.005	0.029	< 0.005	< 0.005	< 0.005	0.458	0.5459	0.5119	0.458	0.44	< 0.01	< 0.005
679939	S3 (0.0-0.2)	30/9/19	soil	on-site	0.0091	0.0073	<0.005	< 0.005	< 0.005	2.2468	2.2863	2.262	2.237	2.2098	< 0.01	0.0098
679939	S3 (0.4-0.6)	30/9/19	soil	on-site	0.0094	0.0083	<0.005	< 0.005	< 0.005	0.3509	0.3962	0.3805	0.343	0.2879	< 0.01	0.0079
679939	S5 (0.5-0.7)	30/9/19	soil	on-site	0.041	0.041	<0.005	< 0.005	< 0.005	0.623	0.8643	0.7953	0.59	0.423	0.016	0.033
679939	S7 (0.0-0.2)	30/9/19	soil	on-site	< 0.005	0.014	<0.005	< 0.005	< 0.005	0.504	0.528	0.528	0.492	0.482	< 0.01	0.012
679939	S7 (0.4-0.6)	30/9/19	soil	on-site	< 0.005	0.0066	<0.005	< 0.005	< 0.005	0.08	0.0966	0.0966	0.08	0.05	< 0.01	< 0.005
679939	S9 (0.0-0.2)	30/9/19	soil	on-site	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	0.1668	0.1668	0.1668	0.1668	0.16	< 0.01	< 0.005
680443	S3 (0.2-0.4)	30/9/19	soil	on-site	0.0063	0.011	<0.005	< 0.005	< 0.005	0.653	0.7019	0.6846	0.634	0.599	< 0.01	0.019
680443	S3 (0.6-0.8)	30/9/19	soil	on-site	0.041	0.018	<0.005	< 0.005	< 0.005	0.445	0.6091	0.548	0.43	0.265	< 0.01	0.015
680443	S3 (0.8-1.0)	30/9/19	soil	on-site	0.075	0.03	<0.005	< 0.005	< 0.005	0.361	0.6462	0.542	0.35	0.131	< 0.01	0.011
680443	S6 (0.5-0.7)	30/9/19	soil	on-site	0.033	0.0071	<0.005	<0.005	<0.005	0.2791	0.4183	0.3652	0.271	0.0891	<0.01	0.0081
680443	S8 (0.0-0.2)	30/9/19	soil	on-site	0.039	0.014	<0.005	<0.005	<0.005	1.168	1.466	1.356	1.09	0.848	0.056	0.078
680443	S8 (0.4-0.6)	30/9/19	soil	on-site	0.0085	0.0072	<0.005	<0.005	< 0.005	0.218	0.2747	0.2585	0.21	0.178	<0.01	0.008
680443	S9 (0.4-0.6)	30/9/19	soil	on-site	<0.005	<0.005	<0.005	<0.005	<0.005	0.028	<0.05	0.0349	0.028	0.006	<0.01	<0.005
680443	S10 (1.0)	30/9/19	soil	on-site	0.014	0.08	<0.005	<0.005	<0.005	0.099	0.2731	0.2528	0.099	0.023	<0.01	< 0.005
680443	S11 (0.0-0.2)	30/9/19	soil	on-site	< 0.005	<0.005	<0.005	<0.005	< 0.005	0.016	<0.05	0.016	0.016	0.0097	<0.01	< 0.005
680443	S11 (0.4-0.6)	30/9/19	soil	on-site	<0.005	<0.005	<0.005	<0.005	< 0.005	0.0071	<0.05	<0.01	0.0071	< 0.005	<0.01	< 0.005
680443	S19 (0.0-0.2)	30/9/19	soil	on-site	< 0.005	<0.005	<0.005	<0.005	< 0.005	0.02	<0.05	0.02	0.02	0.02	<0.01	< 0.005
680443	S19 (0.4-0.6)	30/9/19	soil	on-site	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.05	<0.01	<0.005	< 0.005	<0.01	< 0.005
680454	S12 (0.0-0.2)	1/10/19	soil	on-site	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.05	<0.01	<0.005	< 0.005	<0.01	< 0.005
680454	S12 (0.2-0.4)	1/10/19	soil	on-site	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.05	<0.01	<0.005	< 0.005	<0.01	< 0.005
680454	S13 (0.0-0.2)	1/10/19	soil	on-site	< 0.005	0.01	<0.005	<0.005	< 0.005	0.5366	0.5466	0.5466	0.5366	0.53	<0.01	< 0.005
680454	S13 (0.2-0.4)	1/10/19	soil	on-site	<0.005	0.014	<0.005	<0.005	< 0.005	0.2769	0.3049	0.298	0.2692	0.2677	<0.01	0.0077
680454	S14 (0.0-0.2)	1/10/19	soil	on-site	<0.005	<0.005	<0.005	<0.005	< 0.005	0.15	0.15	0.15	0.15	0.15	<0.01	< 0.005
680454	S14 (0.2-0.4)	1/10/19	soil	on-site	<0.005	0.009	<0.005	<0.005	<0.005	0.2066	0.2223	0.2223	0.1998	0.1968	<0.01	0.0068
680454	S15 (0.0-0.2)	1/10/19	soil	on-site	<0.005	<0.005	<0.005	<0.005	<0.005	0.012	<0.05	0.012	0.012	0.012	<0.01	<0.005
680454	S15 (0.2-0.4)	1/10/19	soil	on-site	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.05	<0.01	<0.005	<0.005	<0.01	<0.005
680454	S16 (0.0-0.2)	1/10/19	soil	on-site	<0.005	0.021	<0.005	<0.005	0.0069	0.757	0.8725	0.7936	0.752	0.735	<0.01	0.005
680454	S16 (0.2-0.4)	1/10/19	soil	on-site	<0.005	0.024	<0.005	<0.005	<0.005	2.244	2.3	2.3	2.234	2.21	<0.01	0.01
680454	S17 (0.0-0.2)	1/10/19	soil	on-site	<0.005	<0.005	<0.005	<0.005	<0.005	0.15	0.15	0.15	0.15	0.15	<0.01	<0.005
680454	S17 (0.2-0.4)	1/10/19	soil	on-site	<0.005	0.011	<0.005	< 0.005	< 0.005	0.577	0.6084	0.601	0.566	0.561	<0.01	0.011
680454	S18 (0.0-0.2)	1/10/19	soil	on-site	<0.005	< 0.005	<0.005	<0.005	<0.005	0.19	0.19	0.19	0.19	0.19	< 0.01	<0.005
680454	S18 (0.2-0.4)	1/10/19	soil	on-site	<0.005	<0.005	<0.005	< 0.005	< 0.005	0.21	0.21	0.21	0.21	0.21	< 0.01	<0.005
680454	S20 (0.0-0.2)	1/10/19	soil	on-site	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	0.043	< 0.05	0.043	0.043	0.043	< 0.01	< 0.005
680454	S20 (0.2-0.4)	1/10/19	soil	on-site	<0.005	< 0.005	< 0.005	< 0.005	<0.005	0.04	< 0.05	0.04	0.04	0.04	< 0.01	<0.005
680454	S21 (0.0-0.2)	1/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	0.013	< 0.05	0.013	0.013	0.013	< 0.01	<0.005
680454	S21 (0.2-0.4)	1/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.007	< 0.05	<0.01	0.007	0.007	<0.01	< 0.005
680454	S22 (0.0-0.2)	1/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.05	<0.01	< 0.005	<0.005	< 0.01	< 0.005
681409	S16 (0.4-0.6)	1/10/19	soil	on-site	0.014	0.051	< 0.005	< 0.005	< 0.005	5.136	5.3359	5.2629	5.096	5.04	< 0.01	0.04
681409	S16 (0.8-1.0)	1/10/19	soil	on-site	0.067	0.11	< 0.005	< 0.005	< 0.005	1.49	2.081	1.882	1.33	0.89	0.027	0.16
681907	S8 (0.8-1.0)	30/9/19	soil	on-site	0.024	0.013	< 0.005	< 0.005	< 0.005	0.516	0.65	0.612	0.5	0.366	< 0.01	0.016
681907	S17 (0.8-1.0)	1/10/19	soil	on-site	< 0.005	<0.005	<0.005	<0.005	<0.005	0.082	0.0913	0.0913	0.082	0.048	<0.01	< 0.005
682248	MW01_0.1-0.2	10/10/19	soil	on-site	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.05	< 0.01	< 0.005	< 0.005	<0.01	< 0.005
682248	MW02_1.0-1.2	10/10/19	soil	on-site	0.009	< 0.005	<0.005	< 0.005	< 0.005	0.048	0.0756	0.0666	0.048	0.011	< 0.01	<0.005
682248	\$16_1.5-1.7	11/10/19	soil	on-site	0.044	0.024	< 0.005	< 0.005	< 0.005	0.16	0.433	0.366	0.16	< 0.005	< 0.01	< 0.005
682248	S16_2.5-2.7	11/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	<0.01	< 0.005	< 0.005	< 0.01	< 0.005
682248	S23_0.0-0.2	10/10/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005
682248	S27_0.05	11/10/19	concrete	on-site	0.0062	0.014	<0.005	<0.005	< 0.005	<0.005	0.1216	0.1078	<0.005	<0.005	<0.01	<0.005

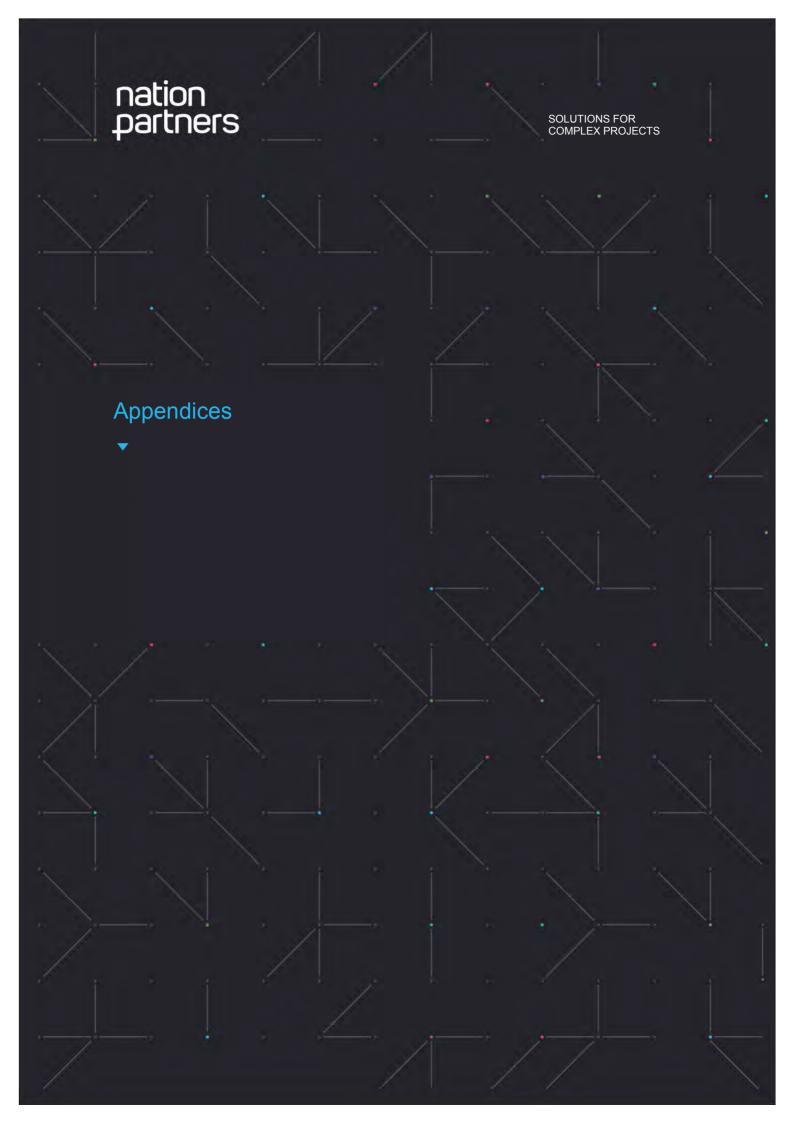
					<u> </u>											
							-	-			-		•	•		
					Perfluoropentane sulfonic acid (PFPeS)	Perfluoropentanoic acid (PFPeA)	Perfluorotetradecan oic acid (PFTeDA)	Perfluorotridecanoi c acid (PFTrDA)	Perfluoroundecanoi c acid (PFUnDA)	Sum of enHealth PFAS (PFHxS + PFOS - PFOA)*	Sum of PFAS	Sum of PFAS (WA DER List)	Sum of PFHxS and PFOS	Sum of US EPA PFAS (PFOS + PFOA)*	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	Perfluorooctanoic acid (PFOA)
					mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL					0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0003
PFAS NEMP 2018 Table 2	Health Public open space												1			10
PFAS NEMP 2018 Table 2	Health Residential accessi	ble soil											0.009			0.1
Site-specific screening levels	vel (Nation Partners, 2019a	a)											1.67			13.35
ECCC (2017) Primary con	sumers															
PFAS NEMP 2018 Table 3	Interim EDE Public open s	pace														10
PFAS NEMP 2018 Table 3	Interim EIE Residential															
Lab Report Number	Field ID	Date	Matrix Type	Location												
685397	S9 (0.8-1.0)	30/9/19	soil	on-site	0.0055	< 0.005	< 0.005	< 0.005	< 0.005	0.0539	0.077	0.0715	0.0539	0.0059	< 0.01	< 0.005
685397	S11 (0.8-1.0)	30/9/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005
685397	S12 (0.8-1.0)	30/9/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005
685397	\$13 (0.4-0.6)	30/9/19	soil	on-site	< 0.005	0.023	< 0.005	< 0.005	< 0.005	0.22	0.29	0.277	0.174	0.134	< 0.01	0.046
685397	S13 (0.8-1.0)	30/9/19	soil	on-site	0.018	0.048	< 0.005	< 0.005	< 0.005	0.127	0.286	0.268	0.127	0.017	< 0.01	< 0.005
685397	\$19 (0.8-1.0)	30/9/19	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.01	< 0.005	< 0.005	<0.01	< 0.005
697518	SD02	17/1/20	sediment	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.05	< 0.01	< 0.005	< 0.005	<0.01	< 0.005
697518	SD05	17/1/20	sediment	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0054	<0.05	< 0.01	0.0054	0.0054	<0.01	< 0.005
698668	S28(0.0-0.2)	22/1/20	soil	on-site	< 0.005	0.011	<0.005	< 0.005	< 0.005	0.062	0.073	0.073	0.062	0.062	<0.01	<0.005
698668	S28(0.2-0.4)	22/1/20	soil	on-site	< 0.005	0.027	< 0.005	< 0.005	< 0.005	0.226	0.3062	0.3062	0.214	0.192	< 0.01	0.012
000000	(20(0.0.0.2)	22/1/20	and l	an alta	0.0000	0.0000	10.005	10.005	10.005	1 470	1 5075	1 5100	1 402	1 41 4	10.01	0.01.4

	5002	1//1/20	sealment	on-site	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.05	<0.01	<0.005	<0.005	<0.01	<0.005
697518	SD05	17/1/20	sediment	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0054	<0.05	< 0.01	0.0054	0.0054	< 0.01	< 0.005
698668	S28(0.0-0.2)	22/1/20	soil	on-site	< 0.005	0.011	< 0.005	<0.005	< 0.005	0.062	0.073	0.073	0.062	0.062	< 0.01	< 0.005
698668	S28(0.2-0.4)	22/1/20	soil	on-site	< 0.005	0.027	< 0.005	< 0.005	< 0.005	0.226	0.3062	0.3062	0.214	0.192	< 0.01	0.012
698668	S29(0.0-0.2)	22/1/20	soil	on-site	0.0066	0.0099	< 0.005	< 0.005	< 0.005	1.476	1.5875	1.5169	1.462	1.414	<0.01	0.014
698668	S29(0.2-0.4)	22/1/20	soil	on-site	< 0.005	0.0057	< 0.005	< 0.005	< 0.005	0.8462	0.8907	0.875	0.837	0.8092	< 0.01	0.0092
698668	\$30(0.0-0.2)	22/1/20	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.3495	0.3495	0.3495	0.3495	0.34	<0.01	<0.005
698668	\$30(0.2-0.4)	22/1/20	soil	on-site	<0.005	0.008	<0.005	<0.005	<0.005	0.597	0.6347	0.6217	0.572	0.555	<0.01	0.025
698668	S31(0.0-0.2)	22/1/20	soil	on-site	<0.005	< 0.005	<0.005	<0.005	<0.005	0.031	<0.05	0.031	0.031	0.031	< 0.01	<0.005
698668	S31(0.2-0.4)	22/1/20	soil	on-site	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.05	< 0.01	<0.005	<0.005	< 0.01	<0.005
	\$32(0.0-0.2)	22/1/20	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	1.001	1.0094	1.001	1.001	0.98	< 0.01	< 0.005
698668	S32(0.2-0.4)	22/1/20	soil	on-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.944	0.9521	0.944	0.944	0.92	< 0.01	< 0.005
698668	\$33(0.0-0.2)	22/1/20	soil	on-site	0.0099	0.0064	<0.005	<0.005	< 0.005	2.719	2.8793	2.7694	2.65	2.569	< 0.01	0.069
	\$33(0.2-0.4)	22/1/20	soil	on-site	0.0089	< 0.005	<0.005	<0.005	< 0.005	2.525	2.6029	2.554	2.51	2.415	< 0.01	0.015
	S29(0.4-0.6)	22/1/20	soil	on-site	0.026	0.014	<0.005	<0.005	<0.005	1.32	1.5591	1.43	1.21	1.1	<0.01	0.11
700221	\$30(0.4-0.6)	22/1/20	soil	on-site	<0.005	0.0078	<0.005	<0.005	< 0.005	0.57	0.612	0.597	0.543	0.517	< 0.01	0.027
	S33A(0.6-0.8)	22/1/20	soil	on-site	0.054	0.0078	<0.005	<0.005	< 0.005	1.187	1.4478	1.3188	1.14	0.737	< 0.01	0.047
701333	S29(0.6-0.8)	22/1/20	soil	on-site	0.059	0.016	<0.005	<0.005	<0.005	1.063	1.3423	1.249	1.02	0.683	<0.01	0.043
701333	S29(0.8-1.0)	22/1/20	soil	on-site	0.039	0.011	< 0.005	< 0.005	< 0.005	0.413	0.5989	0.539	0.39	0.243	< 0.01	0.023
701333	\$30(0.6-0.8)	22/1/20	soil	on-site	<0.005	0.0051	<0.005	<0.005	<0.005	0.4447	0.4711	0.4653	0.435	0.3897	<0.01	0.0097
703149	FP1_0.0-0.2	20/2/20	soil	off-site	<0.005	<0.005	<0.005	<0.005	<0.005	0.0064	<0.05	<0.01	0.0064	0.0064	<0.01	<0.005
	FP2_0.0-0.2	20/2/20	soil	off-site	< 0.005	<0.005	<0.005	<0.005	<0.005	0.047	<0.05	0.047	0.047	0.047	< 0.01	<0.005
703149	FP3_0.0-0.2	20/2/20	soil	off-site	<0.005	<0.005	<0.005	<0.005	<0.005	0.018	<0.05	0.018	0.018	0.018	<0.01	<0.005
703149	FP4_0.0-0.2	20/2/20	soil	off-site	<0.005	<0.005	<0.005	<0.005	<0.005	0.0069	<0.05	< 0.01	0.0069	0.0069	< 0.01	<0.005
703149	FP5_0.0-0.2	20/2/20	soil	off-site	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.021	< 0.05	0.021	0.021	0.021	< 0.01	< 0.005
	FP6_0.0-0.2	20/2/20	soil	off-site	<0.005	< 0.005	<0.005	<0.005	<0.005	0.025	<0.05	0.025	0.025	0.025	< 0.01	< 0.005
703149	FP7_0.0-0.2	20/2/20	soil	off-site	<0.005	<0.005	<0.005	<0.005	0.0097	0.1187	0.1594	0.1187	0.1187	0.11	< 0.01	<0.005
703149	FP8_0.0-0.2	20/2/20	soil	off-site	<0.005	<0.005	<0.005	<0.005	<0.005	0.14	0.14	0.14	0.14	0.14	< 0.01	<0.005
	FP9_0.0-0.2	20/2/20	soil	off-site	<0.005	< 0.005	<0.005	<0.005	<0.005	0.033	<0.05	0.033	0.033	0.033	<0.01	<0.005
	FP10_0.0-0.2	20/2/20	soil	off-site	<0.005	<0.005	<0.005	<0.005	<0.005	0.15	0.15	0.15	0.15	0.15	<0.01	<0.005
703149	FP11_0.0-0.2	20/2/20	soil	off-site	<0.005	<0.005	<0.005	<0.005	<0.005	0.02	<0.05	0.02	0.02	0.02	<0.01	<0.005
703149	FP12_0.0-0.2	20/2/20	soil	off-site	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.05	<0.01	< 0.005	<0.005	< 0.01	< 0.005
	FP13_0.0-0.2	20/2/20	soil	off-site	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.05	< 0.01	< 0.005	<0.005	<0.01	<0.005
703149	FP14_0.0-0.2	20/2/20	soil	off-site	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.05	< 0.01	< 0.005	<0.005	<0.01	<0.005
703149	FP15_0.0-0.2	20/2/20	soil	off-site	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.05	<0.01	< 0.005	<0.005	<0.01	<0.005
703149	FP16_0.0-0.2	20/2/20	soil	off-site	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.05	<0.01	<0.005	< 0.005	<0.01	< 0.005
	\$16A_0.2-0.4	19/2/20	soil	on-site	0.0058	0.036	<0.005	<0.005	<0.005	2.282	2.4253	2.3767	2.263	2.219	<0.01	0.019
703149	S16A_0.4-0.6	19/2/20	soil	on-site	0.0063	0.04	<0.005	<0.005	< 0.005	1.969	2.1127	2.07	1.952	1.917	<0.01	0.017
703149	S16B_0.2-0.4	19/2/20	soil	on-site	<0.005	0.028	<0.005	<0.005	<0.005	0.606	0.7089	0.6642	0.6	0.586	<0.01	0.006
	S16B_0.4-0.6	19/2/20	soil	on-site	< 0.005	0.03	<0.005	< 0.005	< 0.005	0.6398	0.7084	0.7025	0.632	0.6178	<0.01	0.0078
	\$16C_0.2-0.4	19/2/20	soil	on-site	< 0.005	0.0056	<0.005	<0.005	<0.005	0.1758	0.1879	0.1814	0.1758	0.17	<0.01	<0.005
	S16C_0.4-0.6	19/2/20	soil	on-site	<0.005	0.017	<0.005	<0.005	<0.005	0.1598	0.1988	0.1936	0.1598	0.15	<0.01	<0.005
	S34_0.0-0.2	19/2/20	soil	on-site	<0.005	<0.005	<0.005	<0.005	<0.005	0.38	0.38	0.38	0.38	0.38	<0.01	<0.005
	\$34_0.2-0.4	19/2/20	soil	on-site	<0.005	<0.005	<0.005	<0.005	<0.005	0.2755	0.2755	0.2755	0.2755	0.27	<0.01	< 0.005
703149	TARRO_PIT 1	20/2/20	sediment	on-site	<0.005	< 0.005	<0.005	<0.005	<0.005	0.016	<0.05	0.016	0.016	0.016	<0.01	< 0.005
703149	TARRO_PIT 2	20/2/20	sediment	on-site	<0.005	<0.005	<0.005	<0.005	<0.005	0.034	<0.05	0.034	0.034	0.034	< 0.01	< 0.005

Table T2 - Surface Water Analytical Results

					1																	PFOS/PFOA					
EQL PFAS NEMP 2018 Table 1 NHMRC 2019 Health Recr PFAS NEMP 2018 Table 5	eational Water				луви Perfluorodecanoic 7/84 nacid (PFDA)	луви регијиогоњехапојс 7/8 тасја (ренх.д.) 10.0	10:2 Fluorotelomer 7/第 suffonic acid (10:2 FTS)	1000년 지역 4:2 Fluorotelomer 기가 FTS)	N-Ethyl N-Ethyl Sulfonamide (NEFOSA)	N-ethyl- 0 점 perfluorooctanesulf 기 onamidoacetic acid (NEFFOSAA)	N- N- SR ethylperfluorooctan r/seuffonamidoethano I (NEtFOSE)	N-Methyl N-Methyl Suffonamide (NMeFOSA)	N- Methylperfluorooct 7/8 ane sulfonamidoacetic rid (NMFEDSAA)	N- N- 지기 Methylperfluorooct 17 anesufonamidoetha nol (N-MeFOSE)	Perfluorononanesulf 7/8h Perfluorononanesulf (PFNS)(trace)	Perfluorobutane 기가 sulfonic acid (PFBS)	지 Perfluorobutanoic 기계 acid (PFBA)	Perfluorodecanesulf 기 onic acid (PEDS)	Perfluorododecanoi 가 c acid (PFDoDA)	Berfluoropropanesul 기가 fonic acid (PFPrS)	Perfluoroheptane 가 Sulfonic acid (PFHpS)	8:2 Fluorotelomer 7,8 sulfonic acid (8:2 7,5	региносонертапоіс л/а пси (РЕНРА)	지 Perfluorohexane 기/의 Internic acid (PFHxS)	۲/۵۵ Perfluoronomanoic ۲/۵۴ acid (PFNA)	9.0 월 Perfluorooctane 50.0 지ト sulfonamide (PFOSA)	المالي المالي المالي المالي
PFAS NEMP 2018 Table 5																											0.00023
Lab Report Number	Field ID	Date	Matrix Type	Location																							
683251	MW01	17/10/19	water	on-site	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.01	< 0.01	<0.05	< 0.01	<0.01	< 0.01	< 0.01	< 0.00001	< 0.01	<0.01	< 0.01	<0.05	< 0.01
683251	MW02	17/10/19	water	on-site	<0.01	0.18	<0.01	< 0.01	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.01	0.13	0.10	<0.01	< 0.01	0.03	< 0.01	<0.00001	0.04	0.38	<0.01	<0.05	0.26
683251	MW03	17/10/19	water	on-site	<0.01	0.03	<0.01	< 0.01	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.01	<0.01	< 0.05	<0.01	< 0.01	<0.01	< 0.01	<0.00001	< 0.01	0.04	< 0.01	< 0.05	< 0.01
703149	MW01	20/2/20	water	on-site	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.01
703149	MW02	20/2/20	water	on-site	< 0.01	0.11	< 0.01	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	0.06	0.06	< 0.01	< 0.01	0.02	< 0.01	< 0.01	0.02	0.17	< 0.01	< 0.05	0.09
703149	MW03	20/2/20	water	on-site	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.01	< 0.01	<0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.05	0.02
680454	SW01	1/10/19	water	on-site	< 0.01	0.97	< 0.01	< 0.01	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.01	0.31	0.38	< 0.01	< 0.01	0.12	0.08	< 0.01	0.26	1.2	0.04	< 0.05	2
680454	SW02	1/10/19	water	on-site	< 0.01	0.02	< 0.01	< 0.01	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.01	0.01	<0.05	< 0.01	<0.01	< 0.01	< 0.01	<0.01	0.01	0.02	<0.01	<0.05	0.03
697518	SW01	17/1/20	water	on-site	< 0.01	0.34	< 0.01	< 0.01	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.01	0.09	0.21	< 0.01	<0.01	0.03	0.01	<0.01	0.11	0.2	0.02	<0.05	0.44
697518	SW02	17/1/20	water	on-site	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.01	< 0.01	<0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.05	< 0.01
693205	SW03	12/12/19	water	off-site	< 0.01	0.02	< 0.01	< 0.01	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.01	0.02	<0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.06	<0.01	<0.05	0.07
703149	SW03	19/2/20	water	off-site	< 0.01	0.02	< 0.01	< 0.01	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.01	0.01	<0.05	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.06	<0.01	<0.05	0.08
693205	SW04	12/12/19	water	off-site	< 0.01	0.03	<0.01	< 0.01	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.01	0.02	<0.05	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	0.06	< 0.01	< 0.05	0.07
703149	SW04	19/2/20	water	off-site	< 0.01	0.02	< 0.01	< 0.01	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.01	0.01	<0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.06	< 0.01	< 0.05	0.08
697518	SW05	17/1/20	water	on-site	< 0.01	0.04	< 0.01	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.01	< 0.01	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.01	< 0.01	< 0.05	0.04
697518	SW06	17/1/20	water	off-site	< 0.01	< 0.01	< 0.01	< 0.01	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.01	< 0.01	<0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.05	0.03
703149	SW07	19/2/20	water	off-site	<0.01	<0.01	<0.01	< 0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	0.02	<0.05	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.03	< 0.01	<0.05	0.02
703149	SW07A	19/2/20	water	off-site	< 0.01	0.03	< 0.01	< 0.01	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.01	0.01	<0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	0.07	< 0.01	< 0.05	0.05
697518	SW08	17/1/20	water	off-site	< 0.01	< 0.01	<0.01	< 0.01	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.01	< 0.01	<0.05	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.05	0.01
697518	SW09	17/1/20	water	off-site	< 0.01	<0.01	<0.01	< 0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	<0.01	<0.05	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.05	0.01
708095	SW10	16/3/20	water	off-site	< 0.01	0.16	< 0.01	< 0.01	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.01	0.06	0.05	< 0.01	< 0.01	0.02	0.03	< 0.01	0.04	0.38	0.02	< 0.05	1.2
687690	TANK1	11/11/19	water	on-site	< 0.01	< 0.01	<0.01	< 0.01	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.01	< 0.01	<0.05	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.05	<0.01
703149	TARRO_PIT 1	19/2/20	water	on-site	<0.01	0.05	<0.01	< 0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	0.02	<0.05	<0.01	<0.01	0.01	< 0.01	<0.01	0.02	0.07	<0.01	<0.05	0.07
703149	TARRO_PIT 2	19/2/20	water	on-site	< 0.01	0.14	< 0.01	< 0.01	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.01	0.1	0.06	< 0.01	< 0.01	0.05	< 0.01	< 0.01	0.04	0.34	< 0.01	< 0.05	0.14

<0.01	< 0.00001	<0.01	<0.01	<0.01	<0.05	< 0.01
<0.01	< 0.00001	0.04	0.38	<0.01	<0.05	0.26
<0.01	< 0.00001	<0.01	0.04	<0.01	<0.05	< 0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	<0.01
<0.01	<0.01	0.02	0.17	<0.01	<0.05	0.09
<0.01	<0.01	<0.01	0.01	<0.01	<0.05	0.02
0.08	<0.01	0.26	1.2	0.04	<0.05	2
< 0.01	<0.01	0.01	0.02	<0.01	<0.05	0.03
0.01	<0.01	0.11	0.2	0.02	<0.05	0.44
<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	< 0.01
< 0.01	<0.01	< 0.01	0.06	<0.01	<0.05	0.07
<0.01	<0.01	<0.01	0.06	<0.01	<0.05	0.08
<0.01	<0.01	<0.01	0.06	<0.01	<0.05	0.07
< 0.01	<0.01	< 0.01	0.06	<0.01	<0.05	0.08
<0.01	<0.01	0.01	0.01	<0.01	<0.05	0.04
<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.05	0.03
<0.01	<0.01	< 0.01	0.03	<0.01	<0.05	0.02
<0.01	<0.01	< 0.01	0.07	<0.01	<0.05	0.05
<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.05	0.01
<0.01	<0.01	< 0.01	< 0.01	<0.01	<0.05	0.01
0.03	<0.01	0.04	0.38	0.02	<0.05	1.2
<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	<0.01
<0.01	<0.01	0.02	0.07	<0.01	<0.05	0.07
<0.01	<0.01	0.04	0.34	<0.01	<0.05	0.14


					편 편 고 Perfluoropentane 고 Sulfonic acid (PFPeS)	편 Perfluoropentanoic 거 acid (PFPeA)	며 Perfluorotetradecan 가 oic acid (PFT eDA)	편 Perfluorotridecanoi 가 c acid (PFTrDA)	편 Perfluoroundecanoi 거 c acid (PFUnDA)	Eum of enHealth 자 PFAS (PFHxS + PFOS + 가 PFOA)*	Sum of PFAS	동 Sum of PFAS (WA 기 DER List)	站 Sum of PFHxS and アトロS	며 of US EPA PFAS 기 (PFOS + PFOA)*	6:2 Fluorotelomer 젊 sulfonic acid (6:2 FTS)	편 Perfluorooctanoic 거 acid (PFOA)
EQL					0.01	0.01	0.01	0.01	0.01	0.01	0.1	0.05	0.01	0.01	0.05	0.01
PFAS NEMP 2018 Table 1	Health Drinking Water												0.07			0.56
NHMRC 2019 Health Rec	reational Water												2			10
PFAS NEMP 2018 Table 5																220
PFAS NEMP 2018 Table 5																19
Lab Report Number	Field ID	Date	Matrix Type	Location												
683251	MW01	17/10/19	water	on-site	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.1	< 0.05	<0.01	<0.01	<0.05	< 0.01
683251	MW02	17/10/19	water	on-site	0.11	0.19	<0.01	< 0.01	< 0.01	0.66	1.44	1.3	0.64	0.28	<0.05	0.02
683251	MW03	17/10/19	water	on-site	< 0.01	0.02	<0.01	< 0.01	< 0.01	0.04	<0.1	0.09	0.04	<0.01	<0.05	< 0.01
703149	MW01	20/2/20	water	on-site	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.1	< 0.05	<0.01	<0.01	<0.05	< 0.01
703149	MW02	20/2/20	water	on-site	0.04	0.10	<0.01	<0.01	< 0.01	0.27	0.68	0.62	0.26	0.1	<0.05	0.01
703149	MW03	20/2/20	water	on-site	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	0.03	<0.1	< 0.05	0.03	0.02	<0.05	< 0.01
680454	SW01	1/10/19	water	on-site	0.39	1.3	<0.01	<0.01	< 0.01	3.44	7.29	6.66	3.2	2.24	<0.05	0.24
680454	SW02	1/10/19	water	on-site	<0.01	0.02	<0.01	<0.01	< 0.01	0.07	0.13	0.13	0.05	0.05	<0.05	0.02
697518	SW01	17/1/20	water	on-site	0.06	0.8	<0.01	< 0.01	< 0.01	0.7	2.37	2.25	0.64	0.5	<0.05	0.06
697518	SW02	17/1/20	water	on-site	< 0.01	< 0.01	<0.01	<0.01	< 0.01	0.01	0.01	< 0.05	<0.01	0.01	<0.05	0.01
693205	SW03	12/12/19	water	off-site	0.01	0.02	<0.01	< 0.01	< 0.01	0.14	0.21	0.2	0.13	0.08	<0.05	0.01
703149	SW03	19/2/20	water	off-site	< 0.01	0.02	<0.01	< 0.01	< 0.01	0.15	0.2	0.2	0.14	0.09	<0.05	0.01
693205	SW04	12/12/19	water	off-site	0.01	0.03	<0.01	< 0.01	< 0.01	0.14	0.23	0.22	0.13	0.08	<0.05	0.01
703149	SW04	19/2/20	water	off-site	<0.01	0.02	<0.01	<0.01	< 0.01	0.14	0.19	0.19	0.14	0.08	<0.05	< 0.01
697518	SW05	17/1/20	water	on-site	<0.01	0.07	<0.01	<0.01	< 0.01	0.07	0.19	0.19	0.05	0.06	<0.05	0.02
697518	SW06	17/1/20	water	off-site	< 0.01	0.05	<0.01	< 0.01	< 0.01	0.03	0.08	0.08	0.03	0.03	<0.05	< 0.01
703149	SW07	19/2/20	water	off-site	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	0.08	0.07	0.05	0.02	<0.05	<0.01
703149	SW07A	19/2/20	water	off-site	<0.01	0.02	<0.01	<0.01	< 0.01	0.13	0.19	0.19	0.12	0.06	<0.05	0.01
697518	SW08	17/1/20	water	off-site	<0.01	0.03	<0.01	<0.01	< 0.01	0.01	0.04	<0.05	0.01	0.01	<0.05	< 0.01
697518	SW09	17/1/20	water	off-site	<0.01	0.02	<0.01	<0.01	<0.01	0.02	0.04	<0.05	0.01	0.02	<0.05	0.01
708095	SW10	16/3/20	water	off-site	0.05	0.14	<0.01	<0.01	< 0.01	1.62	2.19	2.07	1.58	1.24	<0.05	0.04
687690	TANK1	11/11/19	water	on-site	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.1	<0.05	<0.01	<0.01	<0.05	<0.01
703149	TARRO_PIT 1	19/2/20	water	on-site	0.01	0.03	<0.01	<0.01	< 0.01	0.17	0.31	0.29	0.14	0.1	<0.05	0.03
703149	TARRO PIT 2	19/2/20	water	on-site	0.06	0.08	< 0.01	< 0.01	< 0.01	0.52	1.05	0.94	0.48	0.18	< 0.05	0.04

																	Р	FOS/PFO	A			
	, Perfluorodecanoic acid (PFDA)	, Perfluorohexanoic acid (PFHxA)	, 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	, 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	, N-Ethyl perfluorooctane sulfonamide (NEtFOSA)	N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE)	N-Methyl perfluorooctane sulfonamide (NMeFOSA)	N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	N-Methylperfluorooctanesulfonamidoethanol (N- MeFOSE)	, Perfluorononanesulfonic acid (PFNS)(trace)	, Perfluorobutane sulfonic acid (PFBS)	, Perfluorobutanoic acid (PFBA)	, Perfluorodecanesulfonic acid (PFDS)	, Perfluorododecanoic acid (PFDoDA)	, Perfluoropropanesulfonic acid (PFPrS)	, Perfluoroheptane sulfonic acid (PFHpS)	, 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	, Perfluoroheptanoic acid (PFHpA)	, Perfluorohexane sulfonic acid (PFHxS)	, Perfluorononanoic acid (PFNA)	, Perfluorooctane sulfonamide (PFOSA)
EQL	µg/kg			µg/kg	-	7	µg/kg	7				1			µg/kg		µg/kg	-				
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.3	0.5	0.5
FSANZ 2017 Trigger points for investigation - Fruit																						
FSANZ 2017 Trigger points for investigation - Vegetables																						

Lab Report Number	Field ID	Matrix Description	Date																						
687690	PR01	Produce - limes	11/11/19	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.3	<0.5	<0.5
687690	PR02	Produce - tomatoes	11/11/19	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.3	<0.5	<0.5
687690	PR03	Produce - blueberries	11/11/19	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.3	<0.5	<0.5
687690	PR04	Produce - kaffir limes	11/11/19	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.9	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	<0.3	<0.5	<0.5
687690	PR05	Produce - garlic	11/11/19	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.3	<0.5	<0.5
687690	QC3		11/11/19	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.3	<0.5	<0.5

	Perfluorooctanesulfonic acid (PFOS)	Perfluoropentane sulfonic acid (PFPeS)	Perfluoropentanoic acid (PFPeA)	Perfluorotetradecanoic acid (PFTeDA)	Perfluorotridecanoic acid (PFTrDA)	Perfluoroundecanoic acid (PFUnDA)	Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	Sum of PFAS	Sum of PFAS (WA DER List)	Sum of PFHxS and PFOS	Sum of US EPA PFAS (PFOS + PFOA)*	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	Perfluorooctanoic acid (PFOA)
	µg/kg	µg/kg		µg/kg					µg/kg	µg/kg			
EQL	0.3	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.3
FSANZ 2017 Trigger points for investigation - Fruit	0.6									0.6			5.1
FSANZ 2017 Trigger points for investigation - Vegetables	1.1									1.1			8.8

Lab Report Number	Field ID	Matrix Description	Date													
687690	PR01	Produce - limes	11/11/19	<0.3	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	2.1	2.1	<0.5	<0.5	<0.5	<0.3
687690	PR02	Produce - tomatoes	11/11/19	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.3
687690	PR03	Produce - blueberries	11/11/19	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.3
687690	PR04	Produce - kaffir limes	11/11/19	<0.3	<0.5	8.4	<0.5	<0.5	<0.5	<0.5	14.9	14.3	<0.5	<0.5	<0.5	<0.3
687690	PR05	Produce - garlic	11/11/19	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.3
687690	QC3		11/11/19	<0.3	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	2.2	2.2	<0.5	<0.5	<0.5	<0.3

SOLUTIONS FOR COMPLEX PROJECTS

Appendix A – DSI Addendum 2

7 April 2020

Melanie Stutchbury PFAS Senior Project Officer | Program Management Office Fire & Rescue NSW 1 Amarina Ave Greenacre, NSW, 2190

Dear Melanie

Addendum 2 to Detailed Site Investigation Report – Additional Investigation to close out data gaps for the Human Health and Ecological Risk Assessment Our Lady of Lourdes Primary School Tarro

Nation Partners Pty Ltd (Nation Partners) has been engaged by Fire and Rescue NSW (FRNSW) to undertake a detailed site investigation (DSI) of the nature and extent of per- and poly-fluoroalkyl substances (PFAS) impacts, principally as the result of training using legacy Aqueous Film-Forming Foam (AFFF), at Our Lady of Lourdes (OLOL) Primary School, Tarro, New South Wales (NSW) (the site). The investigation is part of a broader program being undertaken by FRNSW across NSW to manage this legacy issue (see https://www.fire.nsw.gov.au/page.php?id=9170).

A DSI report was prepared by Nation Partners (*Detailed Site Investigation Report – PFAS Investigation, Our Lady of Lourdes Primary School Tarro,* December 2019), which detailed the findings of soil, groundwater and surface water sampling in an investigation area at the site, and presented a conceptual site model (CSM) of contamination sources, pathways and receptors. This addendum letter provides the results of additional sampling works to close out data gaps for the development of a Human Health and Environmental Risk Assessment (HHERA) and potential future management works.

The DSI report should be referred to for detailed information relating to the site, the relevant standards, guidelines and procedures that the works were completed in accordance with, and the findings of the broader environmental investigation.

1. Objectives

FRNSW's primary objective for the DSI was to understand potential contamination risks at the site and the surrounding areas resulting from historical AFFF use (in particular the risks associated with PFAS-containing foams). The objectives of the additional works presented herein were to:

- » Assess the presence of PFAS in shallow offsite surface soil next to footpaths immediately adjacent to the site (running parallel to the north, east and south of the site);
- » Further assess the presence of PFAS in shallow soils onsite;
- » Assess the presence of PFAS in sediment and water collected from two filtration pits that are understood to filter water before it enters the infiltration system present onsite;
- » Assess the presence of PFAS in surface water and sediment in stormwater pits onsite and in surface water and sediment downgradient of the site (offsite);
- » Further assess the presence of PFAS in groundwater onsite;
- » Compare results to published screening levels for PFAS to assess whether there was an exposure risk via the relevant pathway; and
- » If required, provide recommendations to FRNSW on how to further assess or mitigate identified risks.

Sydney office Suite 306 50 Holt Street Surry Hills NSW 2010 1300 876 976
 info@nationpartners.com.au

 nationpartners.com.au

Nation Partners Pty Ltd ABN: 96 166 861 892

2. Scope of work

Nation Partners completed the following scope of work to meet the objectives:

- » Attended the site on 17 January 2020 to collect onsite and offsite surface water and sediment samples;
- » Attended the site on 22 January 2020 to collect onsite soil samples;
- » Attended the site on the 19 and 20 February 2020 to collect samples of surface water, groundwater and soil (on and off the site);
- » Attended the site on 16 March 2020 to collect an offsite surface water and sediment sample;
- » Transported samples under chain-of custody to a National Association of Testing Authorities (NATA) accredited laboratory, where the following analyses were conducted:
- 11 x surface water samples for PFAS;
- 3 x groundwater samples for PFAS;
- 2 x filtration pit water samples for PFAS;
- 42 x shallow soil samples (45 x primary and 5 x quality control [QC]) for PFAS:
 - 17 offsite footpath surface soil samples (16 x primary and 1 x QC);
 - 28 onsite shallow soil samples (26 x primary and 2 x QC); and
- 5 x sediment samples;
 - 4 onsite (2 from stormwater drains and 2 from filtration pits); and
 - 1 offsite.
- » Assessed the field and laboratory data collected, and prepared this addendum letter presenting the findings.

3. Field observations

An experienced Nation Partners environmental scientist or engineer conducted all sampling activities. A general description of samples collected is provided in **Table 1** below. Photographs are included in **Attachment 1** and bore logs are provided in **Attachment 2**.

Sample Type	Depth (m)	Description	Location
Footpath soil samples	0.0-0.2	Topsoil, dark brown, moist No olfactory or visual indications of contamination	Offsite
Onsite shallow soil samples	0.0-0.2	Topsoil, dark brown, moist No olfactory or visual indications of contamination Clay, dark brown, sandy (tending silty and stiff) No olfactory or visual indications of contamination	Onsite
Groundwater	NA	Mostly clear, slight yellow / brown tinge No olfactory or visual indications of contamination	Onsite

Table 1 : General Sample Description

Sample Type	Depth (m)	Description	Location
Surface water	NA	Mostly stagnant, clear with a yellow / brown tinge, and mild to strong swampy odour (strongest odour at SW7a) No other olfactory or visual indications of contamination	Offsite
	NA	Clear ranging to brown/yellow tinged. Minor flow from stormwater pipes No olfactory or visual indications of contamination	Onsite
Filtration pit sediment	0.0-0.2	Brown silty sediment No olfactory or visual indications of contamination	Onsite

Field measurements recorded during surface water and groundwater sampling are provided in **Table A**, **Attachment 3**. The total dissolved solids (TDS) in groundwater was similar to the DSI results from October 2019, with lower TDS again reported in monitoring well MW03 compared to MW01 and MW02 (though the magnitude of difference was less in the recent monitoring). Groundwater standing water levels (SWLs) were similar in MW01 and MW02, but the SWL was approximately 1 m higher in MW03. The reason for this change may be due to the recent removal of a nearby demountable building combined with high rainfall in January 2020, resulting in increased infiltration and potential higher groundwater flow direction, from due north in October 2019 to north-north-east in February 2020.

Most surface water parameters varied significantly, likely due to the differing environments and flow conditions during collection. Samples were consistently freshwater, with the exception of sample SW07A which was brackish and notably had a substantially higher conductivity than sample SW07.

4. Laboratory results

Laboratory results are summarised in **Table B** (soil and sediment), **Table C** (water), **Table D** (soil waste classification - PFAS), and **Table E** (soil waste classification – non-PFAS) in **Attachment 3**. The waste classification tables include all results to date for completeness. Laboratory analysis certificates are provided in **Attachment 4**. Figures showing sample locations are also attached: **Figure 1** (onsite samples); **Figure 2** (S16 delineation samples); and **Figure 3** (surface water samples).

Soil and Sediment Results

Soil – Footpath samples

Of the 16 samples collected from shallow surface soil (0.0-0.2 metres below ground level [m bgl]) on footpaths immediately adjacent to the school, 9 exceeded the PFAS National Environmental Managment Plan (NEMP) health-based guidance value for residential land use for PFOS+PFHxS (0.009 mg/kg), and all were below the PFAS NEMP health-based guidance value for public open space PFOS (1 mg/kg).

The PFAS NEMP interim ecological indirect exposure criterion for PFOS (0.01 mg/kg) was exceeded in 9 samples. There were no exceedances of the PFAS NEMP ecological direct exposure criterion for PFOS (1 mg/kg).

Soil – Onsite samples

Of the 26 soil results collected from shallow surface soil onsite, 25 results exceeded the PFAS NEMP health-based guidance value for residential land use for PFOS+PFHxS (0.009 mg/kg), and 9 results exceeded the PFAS NEMP health-based guidance value for public open space (1 mg/kg). Four results exceeded the PFOS+PFHxS site specific screening level (SSSL) calculated in the DSI (1.67 mg/kg).

The PFAS NEMP interim ecological indirect exposure criterion for PFOS (0.01 mg/kg) was exceeded in 25 results, and 5 results exceeded the PFAS NEMP interim ecological direct exposure criterion for PFOS (1 mg/kg).

Sediment

None of the 3 sediment samples collected from locations co-located with offsite and onsite surface water samples exceeded any of the PFAS NEMP human health or ecological criteria. It is noted that there are no specific sediment assessment criteria in the NEMP.

Water Results

Surface water results

Of the 11 surface water results, 4 results exceeded PFAS NEMP health-based guidance value for drinking water for PFOS+PFHxS (0.07 µg/L). All samples were below the National Health and Medical Research Council (NHMRC, 2019) health-based guidance value for recreational water for PFOS+PFHxS (2 µg/L).

2 of the 11 surface water results exceeded the PFAS NEMP criterion for the freshwater 95% species protection level for PFOS (0.13 μ g/L), while an additional 8 results exceeded the PFAS NEMP criterion for the freshwater 99% species protection level for PFOS (0.00023 μ g/L – results above the laboratory limit of reporting [LOR] were considered to exceed the criterion).

PFAS concentrations were lower in surface water from the onsite stormwater pits (SW01 and SW02) than during the previous monitoring round in October 2019. Other locations were not previously sampled.

Groundwater results

Of the 3 groundwater results, 1 exceeded PFAS NEMP health-based guidance value for drinking water for PFOS+PFHxS (0.07 μ g/L), and all samples were below the NHMRC health-based guidance value for recreational water.

2 samples exceeded the PFAS NEMP criterion for the freshwater 99% species protection level for PFOS (0.00023 μ g/L), and all samples were below the PFAS NEMP criterion for the freshwater 95% species protection level for PFOS (0.13 μ g/L).

Groundwater PFAS concentrations were also lower than during the previous monitoring round in October 2019.

Filtration Pit Samples

Water

Of the 2 water samples collected from filtration pit 1 and filtration pit 2, both samples exceeded PFAS NEMP health-based guidance value for drinking water for PFOS+PFHxS (0.07 μ g/L), and both samples were below the NHMRC health-based guidance value for recreational water.

Of the 2 samples, 1 sample exceeded PFAS NEMP criterion for the freshwater 99% species protection level for PFOS (0.00023 μ g/L), and one sample exceeded the PFAS NEMP criterion for the freshwater 95% species protection level for PFOS (0.13 μ g/L).

Sediment

The results of the 2 sediment samples collected from the filtration pits present on the site exceeded the PFAS NEMP health-based guidance value for residential land use for PFOS+PFHxS (0.009 mg/kg), and the PFAS NEMP interim ecological indirect exposure criterion for PFOS (0.01 mg/kg).

Waste Classification

The results of waste classification sampling for PFAS and non-PFAS contaminants indicate that material at the site is classified as general solid waste (GSW), with the exception of soils in the vicinity of S16, S16a and S33. These soils are classified as restricted solid waste (RSW) due to their total and/or leachable PFAS concentrations.

5. Quality Assurance / Quality Control (QA/QC)

Field and laboratory QA/QC protocols were adopted in accordance with relevant guidance and as further described in the DSI report.

Sampling was conducted using a new pair of nitrile gloves for each sample to minimise the risk of cross contamination. Samples were placed directly into laboratory supplied sampling bags (for produce) or bottles (for tank water). Samples were then transferred into an ice chilled esky and transported by Nation Partners directly to the laboratory on the day of sampling.

A total of three intra-laboratory soil/sediment duplicates were collected and analysed for PFAS at a rate of 6.4%. This meets the rate recommended in relevant guidance and standards of 5-10%. No water duplicates were collected and analysed during these mobilisations, and due to a laboratory error no interlaboratory soil duplicates were analysed. However, this is considered acceptable as appropriate QC sampling frequencies have been achieved over DSI sampling program.

Primary and duplicate sample results are provided in **Table F** in **Attachment 2**, and show good precision with only 10 relative percent difference (RPD) exceedances from 90 analysis pairs and 3 RPD exceedances for the key compounds PFOS, PFHxS and PFOA. The exceedances relate to the intralaboratory duplicate (QC4) of the S16A_0.4-0.6 delineation sample. The maximum RPD was 84%, and although QC results were generally higher than the primary sample results both primary and duplicate samples reported the same exceedances of adopted screening and waste criteria. Therefore, these isolated exceedances are not considered to indicate a significant issue with data quality.

Laboratory QA/QC results, including holding times, laboratory duplicates, blanks, matrix spikes, control samples and surrogates, were reviewed and indicated no significant non-conformances. Overall, the field and laboratory QA/QC protocols and results are considered acceptable and indicate that the sampling data are suitable for the intent of the works.

6. Conclusions

Nation Partners has completed additional investigations at the site to address data gaps for the completion of the HHERA, and potential future site management, in relation to potential PFAS exposure pathways from surface water, shallow soil/sediment and groundwater on and off the site.

The data obtained have been assessed to be of appropriate quality and have been screened against tier 1 investigation levels, the DSI-derived SSSL, and waste classification criteria. PFAS have been reported in onsite and offsite soils, sediment and surface water and onsite groundwater, with a number of exceedances of screening criteria reported in various media. However, concentrations of PFAS were generally similar to those reported during the DSI (and were lower in onsite groundwater and surface water) and the initial assessment of risk presented in the DSI report has not altered based on the additional results.

Onsite soils, should they be required to be excavated and disposed offsite, have predominantly been classified as GSW. The exception are soils in the vicinity of sample locations S16, S16A and S33, which are classified as RSW due to their PFAS concentrations.

The HHERA will now be completed incorporating the DSI data and the information reported in this addendum into an updated conceptual site model (CSM). The HHERA will assess the significance of screening level exceedances and potential exposure risks from PFAS. Further recommendations to assess or manage unacceptable risks (if any) will be provided in the HHERA.

7. Limitations

The sole purpose of this addendum letter report (the 'Report') is to present the results of additional site investigations for the target investigation area as defined in this Report at Our Lady of Lourdes Primary School, Tarro, NSW. This Report has been prepared by Nation Partners for the sole use of Fire & Rescue NSW (FRNSW) (the 'Client') and in accordance with the scope of services developed and agreed between Nation Partners and the Client.

All reports and conclusions that deal with sub-surface conditions are based on interpretation and judgement of site conditions at the time site investigations were conducted, and as a result the description of a site's conditions has inherent uncertainty attached to it. Conditions at the site may have changed due to natural forces and/or operations on or near the site. Any decisions based on the findings of the Report must take into account any subsequent changes in site conditions and/or developments in legislative and regulatory requirements. The site investigation was targeted in nature and was not intended as a detailed, systematic assessment of all contamination in all media across the site. Nation Partners accepts no liability to the Client for any loss and/or damage incurred as a result of a change in the site conditions and/or regulatory/legislative framework since the date of the Report.

This Report should only be presented in full and should not be used to support any objective other than those detailed in the Report. In particular, the Report does not contain sufficient information to enable it to be used for any use other than the project specific requirements for which the Report was carried out. Nation Partners accepts no liability to the Client for any loss and/or damage incurred as a result of changes to the usage, size, design, layout, location or any other material change to the intended purpose contemplated under this Agreement. The Report is based on an interpretation of factual information available and the professional opinion and judgement of Nation Partners. Unless stated to the contrary, Nation Partners has not verified the accuracy or completeness of any information received from the Client or a third party for the purposes of preparing the Report. Nation Partners accepts no liability to the Client for any loss and/or damage incurred as a result of any loss and/or damage incurred as a result of any inaccurate or incomplete information.

Any reliance on this Report by a third party shall be entirely at such party's own risk. Nation Partners provides no warranty or guarantee to any third party, express or implied, as to the information and/or professional advice indicated in the Report, and accepts no liability for or in respect of any use or reliance upon the Report by a third party.

Sincerely, Nation Partners Pty Ltd

Luke Clements

Senior Principal

Attachments:

- » 1. Photographs
- » 2. Bore Logs
- » 3. Results Tables
- » 3. Laboratory Certificates

Docume	ument title: Addendum 2 to Detailed Site Investigation Report – PFAS Investigation, OLOL Primary School Tarro						
Version:		0.4					
Date:		7-Apr-20					
Prepareo	d by:	Alex Francis					
Approve	d by:	Luke Clements					
File nam	e:	e: DSI Addendum 2 - OLOL PS - Tarro_v0.3.docx					
Nation Partners Pty Ltd ABN 96 166 861 892 Suite 306, 50 Holt St Surry Hills NSW 2010							
Tel:	1 300 8	376 976					
Email:	info@n	ationpartners.com.au					
Web:	www.n	ationpartners.com.au					
COPYRIGHT: The concepts and information contained in this document are the property of Nation Partners Pty Ltd. Use or copying of this document in whole or in part without the written permission of Nation Partners constitutes an infringement of copyright.							

Figures

Ref: NP19039 - FRNSW Tarro

Figure 1: Sample Locations

FRNSW - PFAS Investigation (Tarro) NP19039

COPYRIGHT

COPYRIGHT The concepts and information contained in this document are the property of Nation Partners Pty Ltd. Use or copying of this document in whole or in part without the written permission of Nation Partners Pty Ltd constitutes an infingement of copyright. Nation Partners Pty Ltd does not warrant that this document is definitive on free of error and does not accept liability for any loss caused or antsing from reliance upon information provided herein.

Legend

Investigation Area Infiltration System

Surface Water

Sediment Samples

Groundwater Samples

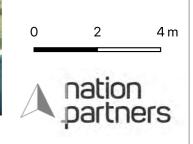
Imagery: Nearmaps, 2019; Sixmaps, 2019

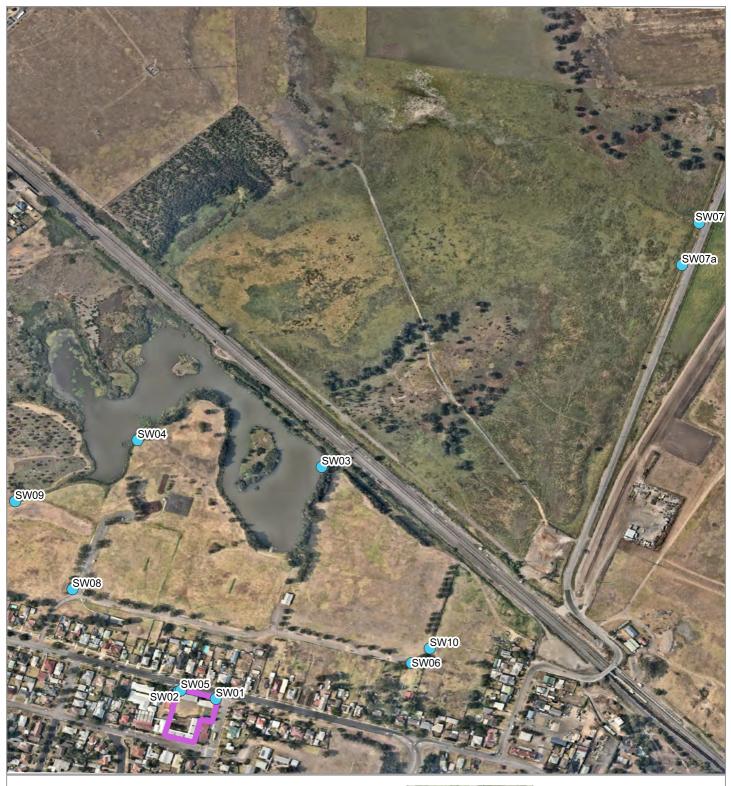
0

20 m

nation partners

Figure 2: S16 Delineation Samples


FRNSW - PFAS Investigation (Tarro) NP19039


COPYRIGHT The concepts and information contained in this document are the property of Nation Partners Pty Ltd. Use or copying of this document in whole or in part without the written permission of Nation Partners Pty Ltd does not warrant that this document is definitive nor free of error and does not accept liability for any loss caused or arising from reliance upon information provided herein.

DATA SOURCES Imagery: Nearmaps, 2019; Sixmaps, 2019

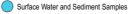


Figure 3: Surface Water Sample Locations

FRNSW - PFAS Investigation (Tarro) NP19039

COPYRIGHT The concepts and information contained in this document are the property of Nation Partners Pty Ltd. Use or copying of this document in whole or in part without the written permission of Nation Partners Pty Ltd onlikes an infringement of copyright. Nation Partners Pty Ltd does not warrant that this document is definitive nor free of error and does not accept liability for any loss caused or anising from reliance upon information provided herein.

Attachment 1 – Photographs

Ref: NP19039 - FRNSW Tarro

Photo 9: Soil sampling from freshly turfed area (S16a – 19 Soil sampling from freshly turfed area (S32 – 22 Jan 2020) Feb 2020)

Attachment 2 – Bore Logs

		Boring Log				
natio		Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: S28
partr	iers	Project No: NP19039	Date d	rilled: 22/01/2020	1	Drill Rig Type: Hand Auger
Site Addre	Site Address: Anderson Drive,		Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSV	Tarro, NSW		Elevati		WorkPac	Hammer Type:
Logged By	y :AF + F	PN	Total D)epth:	Bit Type: 30mm	Drill Crew:
Depth (m)	Sample Type	Sample ID	ບ ເຊັ່ງ ເຊັ່ງ <u>Soil Group Name:</u> ກ		hology nodifier, color, moisture, ain size, other descriptors	Contaminant Indicators
		S28 (0.0-0.2) + WC			0mm over original soil)	
				topso	il (300mm)	
<u> </u>		S28 (0.2-0.4) + WC				
0.5		S28 (0.4-0.6) + WC		Clay - dark	brown, sandy clay	
0.75		S28 (0.6-0.8) + WC				
		S28 (0.8-1.0) + WC				
1.0					DH @ 1.0	
						····
			••••••			
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
<u>Notes:</u> WC = wast	e classi	fication sample colle	cted			

		Boring Log					
natior	ר (	Project Name: Tarr	o, NSW	1	Client: FRNSW	Boring No: S29	
partn	ers	Project Name: Tarr Project No: NP19039	Date drilled: 22/01/2020		-	Drill Rig Type: Hand Auger	
Site Addre	ss: And	derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:	
Tarro, NSW			Elevati		WorkPac	Hammer Type:	
Logged By	Logged By:AF + PN		Total D	epth:	Bit Type:	Drill Crew:	
				•	30mm		
Depth (m)	Sample Type	Sample ID	allic		difier, color, moisture, size, other descriptors	Contaminant Indicators	
0.05		S29 (0.0-0.2) + WC		topsoil (ź	250mm)		
0.25		S29 (0.2-0.4) + WC					
0.5		S29 (0.4-0.6)		Clay - dark bro	own, sandy clay		
0.75		S29 (0.6-0.8) S29 (0.8-1.0)					
1.0				EOH	@ 1.0		
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
			••••••				
Notes:							
	e classi	fication sample colle	cted				

		Boring Log				
natio	n	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: S30
partn	ers	Project No:		rilled: 22/01/2020	4	Drill Rig Type: Hand
		NP19039	Date a	11100. 22/01/2020		Auger
		derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	Tarro, NSW		Elevati	on:	WorkPac	Hammer Type:
Logged By	:AF + F	PN	Total D	epth:	Bit Type:	Drill Crew:
					30mm	
(c			0	Lithe	ology	
Depth (m)	Sample Type	Sample ID	Graphic Log		difier color mainture	Contaminant
ept	San	Sample ID	Gra	Soil Group Name: modifier, color, moisture, density/consistency, grain size, other descriptors		Indicators
			U	action, control of the state of		
-		S30 (0.0-0.2) + WC		topsoil	(20mm)	
0 25						
		S30 (0.2-0.4) + WC				
0.5		S30 (0.4-0.6)		Clay - dark brown, sandy clay	y, more moist than previous h	oles
0.75		S30 (0.6-0.8)				
0.75					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
				501	~ ^ ^ ^	
1.0				EOH	@ 0.8	
						•
			~~~~~~			
			******			
			~~~~~			
Notes:		6				
WC = waste	e classi	fication sample colle	cted			

- •		Boring Log	pc				
natio	٦ ا	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: S30	
partn	ers	Project No:	Date d	rilled: 22/01/2020		Drill Rig Type: Hand	
		NP19039				Auger	
		derson Drive,		dwater Depth: NA	Drilling Contractor:	Diameter:	
Tarro, NSW	/		Elevati	on:	WorkPac	Hammer Type:	
Logged By	:AF + F	PN	Total D	epth:	Bit Type:	Drill Crew:	
					30mm		
Depth (m)	Sample Type	Sample ID	Graphic Log	Litho Soil Group Name: mo density/consistency, grain		Contaminant Indicators	
_		S31 (0.0-0.2) + WC		topsoil	(50mm)		
0.05							
0 25		S31 (0.2-0.4) + WC					
		S31 (0.4-0.6)		Clay - dark bro	own, sandy clay	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
0.5							
0.75		S31 (0.6-0.8)					
1.0				EOH @ 0.7	5 (PVC pipe)		
1.0							
			·····		•••••••••••••••••••••••••••••••••••••••		
<u>Notes:</u> WC = wast	e classi	fication sample colle	cted				

- •	Boring Log					
natio	n	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: S32
partn	ers	Project No: NP19039	Date d	rilled: 22/01/2020	-	Drill Rig Type: Hand Auger
Site Addre	ss: And	derson Drive,	Groun	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSV	V		Elevati	on:	WorkPac	Hammer Type:
Logged By	/:AF + [PN	Total D	Depth:	Bit Type:	Drill Crew:
					30mm	
Depth (m)	Sample Type	Sample ID	Graphic Log	Soil Group Name: mo density/consistency, grain	n size, other descriptors	Contaminant Indicators
_	S32	2 (0.0-0.2) + WC + C	C1	topsoil	(300mm)	
0.25						
	S32	2 (0.2-0.4) + WC + C	C2			
0.5		S32 (0.4-0.6)		Clay - dark bro	own, sandy clay	
0.75		S32 (0.6-0.8)				······································
		S32 (0.8-1.0)				
1.0				EOH	@ 1.0	
			•••••			
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
<u>Notes:</u> WC = wast	e classi	fication sample colle	cted			

		Boring Log				
natior	٦ ا	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: S34
Dartn	ers	Project No:		rilled: 22/01/2020	1	Drill Rig Type: Hand
Τ		NP19039				Auger
Site Addre	ss: And	derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	/		Elevati	on:	WorkPac	Hammer Type:
Logged By	:AF + F	PN	Total D	epth:	Bit Type:	Drill Crew:
				-	30mm	
Ê				Litho	ology	
ר) ב	ple		aphic Log			Contaminant
Depth (m)	Sample Type	Sample ID	Graphic Log	Soil Group Name: modifier, color, moisture, density/consistency, grain size, other descriptors		Indicators
ă	0)		0	density/consistency, grain		
		S34 (0.0-0.2) + WC		topsoil (	300mm)	
		004 (0.0 0.2) • 110				
0 25						
		S34 (0.2-0.4) + WC				
0.5				Clay - dark bro	own, sandy clay	glass 0.0-0.4
0.5				EOH @ 0.4 (refusal on co	ompacted clay - moved hole	
		S34 (0.4-0.6)			0.00000.10.000t)	
0.75		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			*****	
		S34 (0.6-0.8)				
1.0		S34 (0.8-1.0)		EOH @ 1.0	) (PVC pipe)	
		•••••••••••••••••••••••••••••••••••••••				
		•••••••				
			~~~~~~			
Notes:						
	e classi	fication sample colle	cted			

		Boring Log				
natio	n	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: S33
partn	ers	Project No: NP19039	Date d	rilled: 22/01/2020	-	Drill Rig Type: Hand Auger
Site Addre	ss: And	derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSV	V		Elevati		WorkPac	Hammer Type:
Logged By	/:AF + F	PN	Total D	epth:	Bit Type:	Drill Crew:
					30mm	
Depth (m)	Sample Type	Sample ID	Graphic Log	Lithology Soil Group Name: modifier, color, moisture, density/consistency, grain size, other descriptors		Contaminant Indicators
	S33	3 (0.0-0.2) + WC + Q	C3	topsoil (300mm)	
0 25		S33 (0.2-0.4) + WC				
			*****	Clay - dark bro	wn sandy clay	
0.5				EOH @ 0.4 (refusal on co	wn, sandy clay ompacted clay - moved hole Occomments	
0.75		S33a (0.4-0.6)				
0.75		S33a (0.6-0.8)				
				FOH @ 0.8	(PVC pipe)	
1.0						
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			•••••••••••••••••••••••••••••••••••••••	
Notes:				1		
WC = wast	e classi	fication sample colle	cted			

-		Boring Log				
natio	n	Project Name: Tar	ro, NSW	I	Client: FRNSW	Boring No: S16a
partr	ners	Project No: NP19039	Date d	rilled: 22/01/2020		Drill Rig Type: Hand Auger
Site Addre	ess: Ande	erson Drive, Tarro,	Groun	dwater Depth: NA	Drilling Contractor:	Diameter:
NSW		Elevati	ion:	WorkPac	Hammer Type:	
Logged B	<b>y:</b> AF + PN	١	Total D	Depth:	Bit Type: 30mm	Drill Crew:
Depth (m)	Sample Type	Sample ID	Graphic Log	Soil Group Name:	thology modifier, color, moisture, ain size, other descriptors	Contaminant Indicators
				brown, clayey silt, moist -	brown, clayey silt, moist - , da - , dark brown, clayey silt, mois il (300mm)	
0.30		S16a (0.2-0.4) + WC	<u></u> )			
0.5		6a (0.4-0.6) + WC + 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Clay - dark	brown, sandy clay	
0.0				······		
0.75	-	S16a (0.6-0.8)				
0.8						
				EC	DH @ 0.8	
			••••••			
			<u> </u>			
Notes:			1	I		1
WC = was	te classific	cation sample collect	ed			

natic	n	Project Name: Tar	ro. NSV	1	Client: FRNSW	Boring No: S16b	
		-		rilled: 22/01/2020		Drill Rig Type: Har	
		Project No: NP19039				Auger	
	ess: Ande	erson Drive, Tarro,		dwater Depth: NA	Drilling Contractor:	Diameter:	
NSW			Elevat		WorkPac	Hammer Type:	
Logged B	<b>y:</b> AF + P	Ν	Total E	Depth:	<b>Bit Type:</b> 30mm	Drill Crew:	
Depth (m)	Sample Type	Sample ID	Graphic Log	Soil Group Name: density/consistency, gr	thology modifier, color, moisture, ain size, other descriptors	Contaminant Indicators	
				hrown clavev silt moi	brown, clayey silt, moist - , dark ist		
0.30	S16	b (0.2-0.4) + WC + (	QC5				
					brown conductor		
0.5		S16b (0.4-0.6) + WC	ĺ	Clay - dark	brown, sandy clay		
0.75		S16b (0.6-0.8)					
0.8 -							
				EC	DH @ 0.8		
			•••••••				
						•	
						******	
lotes:							

		Boring Log				
natio	n l	Project Name: Tar	o, NSW	1	Client: FRNSW	Boring No: S16c
nartn	ers	Project Name: Tari Project No:	Date d	rilled: 22/01/2020		Drill Rig Type: Hand
-		INF 19039				Auger
		lerson Drive,			Drilling Contractor:	Diameter:
Tarro, NSW			Elevati		WorkPac	Hammer Type:
Logged By	':AF + F	۷N	Total D	Depth:	Bit Type: 30mm	Drill Crew:
Depth (m)	Sample Type	Sample ID	Graphic Log	Litho Soil Group Name: mod density/consistency, grain	difier, color, moisture, size, other descriptors	Contaminant Indicators
				brown, clayey silt, moist -	wn, clayey silt, moist - , dark ~50mm over original soil)	
				topsoil (3		
U 2U		S16c (0.2-0.4) + WC				
0.5		S16c (0.4-0.6) + WC		Clay - dark bro	wn. sandv clav	
0.0						
		S16c (0.6-0.8)				
0.75		0100 (0.0-0.0)				
0.8				5011	<b>~</b> ~ ~	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~	EOH (	@ 0.8	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
			~~~~~~			
						<u> </u>
<u>Notes:</u> WC = waste	e classi	fication sample colle	cted			

		Boring Log				
natior	ר	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: S16d
partn	ers	Project No: NP19039	Date d	rilled: 19/02/2020		Drill Rig Type: Hand Auger
Site Addre	ss: And	derson Drive,	Groundwater Depth: NA		Drilling Contractor:	Diameter:
Tarro, NSV	/		Elevati	on:	WorkPac	Hammer Type:
Logged By	:AF + F	۶N	Total D	epth:	Bit Type:	Drill Crew:
					30mm	
Depth (m)	Sample Type	Sample ID	Soil Group Name:         Modifier, color, moisture,           density/consistency, grain size, other descriptors		difier, color, moisture, size, other descriptors	Contaminant Indicators
					wn, clayey silt, moist - , dark ~50mm over original soil) 300mm)	
0.20	S16	id (0.2-0.4) + WC + C	QC6			
0.5	;	S16d (0.4-0.6) + WC		Clay - dark bro	wn, sandy clay	
		S16d (0.6-0.8)				
0.75						
0.8 -					~ ^ ^	
				EOH	@ 0.8	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Notes:				•		
WC = wast	e classi	fication sample colle	cted			

-		Boring Log				
natior	ר	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: S16e
partn	ers	Project No: NP19039	Date d	rilled: 19/02/2020		Drill Rig Type: Hand Auger
Site Addre	ss: And	derson Drive,	Groun	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	/		Elevati	on:	WorkPac	Hammer Type:
Logged By	:AF + F	PN	Total D	Depth:	Bit Type:	Drill Crew:
					30mm	
Depth (m)	Sample Type	Sample ID	Graphic Log	Litho Soil Group Name: mo density/consistency, grain	Contaminant Indicators	
					wn, clayey silt, moist - , dark ~50mm over original soil)	
	S 16		L	topsoil (3		
	510	ie (0.2-0.4) + WC + 0	ر ر ا		,	
U 2U						
0.5	:	S16e (0.4-0.6) + WC	;	Clay - dark bro	wn, sandy clay	
0.75		S16e (0.6-0.8)				
0.75						
0.8 -		*****		EOH (@∩8	
				LOIT	@ 0.8	
Notes:						
WC = waste	e classi	fication sample colle	cted			

		Boring Log				
natior	ר	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: S16f
nartn	ers	Project No:	Date d	rilled: 19/02/2020	1	Drill Rig Type: Hand
	NP19039				Auger	
		derson Drive,	Groun	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	/		Elevati	on:	WorkPac	Hammer Type:
Logged By	/:AF + [۶N	Total D	epth:	Bit Type:	Drill Crew:
					30mm	
Depth (m)	Sample Type	Sample ID	Graphic Log	Lithology Soil Group Name: modifier, color, moisture, density/consistency, grain size, other descriptors		Contaminant Indicators
Δ			•		-	
				brown, clayey silt, moist -	wn, clayey silt, moist - , dark ~50mm over original soil)	
				topsoil (300mm)	
0.30	S16	6d (0.2-0.4) + WC + 0	2C8			
0.5		S16f (0.4-0.6) + WC		Clav - dark bro	wn, sandy clay	
0.0						
		S16f (0.6-0.8)				
0.75						
0.8				FOU	<u> </u>	
				EOH	<u>@</u> 0.8	
Notes:			1	1		<u>.</u>
WC = waste	e classi	fication sample colle	cted			

		Boring Log				
natior	٦	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: FP1
partn	ers	Project No: NP19039	Date d	rilled: 20/02/2020	1	Drill Rig Type: Shovel
Site Addre	ss: And	derson Drive,	Groun	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	V		Elevati	on:	NA	Hammer Type:
Logged By	/:AF + F	PN + MB	Total D	epth:0.2m	Bit Type:	Drill Crew:
					NA	
Depth (m)	Sample Type	Sample ID	Soil Group Name: mo density/consistency, grain			Contaminant Indicators
				Topsoil, dark brown o	clayey silt, moist - soft	
		FP1_0.0-0.2				
0.20						
				EOH @0.2 (desin	ed depth achieved)	

<u>Notes:</u>						

		Boring Log				
natior	ר	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: FP2
partn	ers	Project No: NP19039	Date d	rilled: 20/02/2020		Drill Rig Type: Shovel
Site Addre	ss: And	derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	V		Elevati	on:	NA	Hammer Type:
Logged By	/:AF + F	PN + MB	Total D	epth:0.2m	Bit Type:	Drill Crew:
					NA	
Depth (m)	Sample Type	Sample ID	Soil Group Name: mo density/consistency, grain			Contaminant Indicators
				Topsoil, dark brown	clayey silt, moist, soft	
		FP2_0.0-0.2				
0.20						
				EOH @0.2 (desire	ed depth achieved)	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
<u>Notes:</u>						

		Boring Log				
natior	ר	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: FP3
partn	ers	Project No: NP19039	Date d	rilled: 20/02/2020		Drill Rig Type: Shovel
Site Addre	ss: And	derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	V		Elevati	on:	NA	Hammer Type:
Logged By	/:AF + F	PN + MB	Total D	epth:0.2m	Bit Type:	Drill Crew:
					NA	
Depth (m)	Sample Type	Sample ID	Soil Group Name: modensity/consistency, grain			Contaminant Indicators
				Topsoil, dark brown	clayey silt, moist, soft	
		FP3 0 0-0 2				
0.20		FP3_0.0-0.2				
				EOH @0.2 (desir	ed depth achieved)	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
			•••••			
<u>Notes:</u>						

		Boring Log				
natior	ר		oject Name: Tarro, NSW			Boring No: FP4
partn	ers	Project No: NP19039	Date d	rilled: 20/02/2020		Drill Rig Type: Shovel
Site Addre	ss: And	derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	V		Elevati	on:	NA	Hammer Type:
Logged By	/:AF + F	PN + MB	Total D	epth:0.2m	Bit Type:	Drill Crew:
				-	NA	
Depth (m)	Sample Type	Sample ID	Soil Group Name: mo density/consistency, grain			Contaminant Indicators
				Topsoil, dark brown	clayey silt, moist, soft	
		FP4_0.0-0.2				
0.20		11 4_0.0 0.2				
				EOH @0.2 (desire	ed depth achieved)	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
<u>Notes:</u>						

		Boring Log				
natior	ר	Project Name: Tar	ro, NSW		Client: FRNSW	Boring No: FP5
partn	ers	Project No: NP19039	Date d	rilled: 20/02/2020		Drill Rig Type: Shovel
Site Addre	ss: And	derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	V		Elevati	on:	NA	Hammer Type:
Logged By	/:AF + F	PN + MB	Total D	epth:0.2m	Bit Type:	Drill Crew:
					NA	
Depth (m)	Sample Type	Sample ID	Soil Group Name: mo density/consistency, grain		difier, color, moisture,	Contaminant Indicators
				Topsoil, dark brown	clayey silt, moist, soft	
		FP5_0.0-0.2				
0.20		110_0.0 0.2				
			······	EOH @0.2 (desire	ed depth achieved)	
<u>Notes:</u>						

		Boring Log				
natior	ר		oject Name: Tarro, NSW			Boring No: FP6
partn	ers	Project No: NP19039	Date d	rilled: 20/02/2020	•	Drill Rig Type: Shovel
Site Addre	ss: And	derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	V		Elevati	on:	NA	Hammer Type:
Logged By	/:AF + F	PN + MB	Total D	epth:0.2m	Bit Type:	Drill Crew:
					NA	
Depth (m)	Sample Type	Sample ID	Soil Group Name: mo density/consistency, grain			Contaminant Indicators
				Topsoil, dark brown	clayey silt, moist, soft	
		FP6_0.0-0.2				
0.20						
				EOH @0.2 (desire	ed depth achieved)	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				***********
<u>Notes:</u>						

		Boring Log				
natior	ר	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: FP7
partn	ers	Project No: NP19039	Date d	rilled: 20/02/2020		Drill Rig Type: Shovel
Site Addre	ss: And	derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSV	V		Elevati	on:	NA	Hammer Type:
Logged By	/:AF + F	PN + MB	Total D	epth:0.2m	Bit Type:	Drill Crew:
					NA	
Depth (m)	Sample Type	Sample ID	Soil Group Name: mo density/consistency, grain			Contaminant Indicators
				Topsoil, dark brown	clayey silt, moist, soft	
		FP7_0.0-0.2				
0.20						
				EOH @0.2 (desire	ed depth achieved)	
Notes:						

		Boring Log				
natior	ר	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: FP8
partn	ers	Project No: NP19039	Date d	rilled: 20/02/2020		Drill Rig Type: Shovel
Site Addre	ss: And	derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	V		Elevati	on:	NA	Hammer Type:
Logged By	/:AF + F	PN + MB	Total D	epth:0.2m	Bit Type:	Drill Crew:
					NA	
Depth (m)	Sample Type	Sample ID	Soil Group Name: mo density/consistency, grain			Contaminant Indicators
				Topsoil, dark brown	clayey silt, moist, soft	
		FP8_0.0-0.2				
0.20		110_0.0 0.2				
			······	EOH @0.2 (desire	ed depth achieved)	
<u>Notes:</u>						

- •		Boring Log				
natior	ר	Project Name: Tar	ro, NSW		Client: FRNSW	Boring No: FP9
partn	ers	Project No: NP19039	Date d	rilled: 20/02/2020		Drill Rig Type: Shovel
		derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	/		Elevati	on:	NA	Hammer Type:
Logged By	':AF + F	PN + MB	Total D	epth: 0.2m	Bit Type: NA	Drill Crew:
Depth (m)	Sample Type	Sample ID	Graphic Log	Litho Soil Group Name: moo density/consistency, grain	difier, color, moisture, size, other descriptors	Contaminant Indicators
				Topsoil - dark brown, clayey bard than the	silt, moist, soft (more dry and other.samples)	
		FP9_0.0-0.2				
0.20						
			~~~~~	EOH @0.2 (desire	ed depth achieved)	
				NB: sample was taken next to road side of the footpath - po		
					e adjacent to this area	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
			~~~~~			
		•••••••••••••••••••••••••••••••••••••••				
<u>Notes:</u>						

		Boring Log				
natior	1	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: FP10
partn	ers	Project Name: Tari Project No: NP19039	Date di	rilled: 20/02/2020		Drill Rig Type: Shovel
Site Addre			Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	/		Elevati	on:	NA	Hammer Type:
Logged By	':AF + F	PN + MB	Total D	<b>epth:</b> 0.2m	<b>Bit Type:</b> NA	Drill Crew:
Depth (m)	Sample Type	Sample ID	Graphic Log	Litho Soil Group Name: mod density/consistency, grain	difier, color, moisture,	Contaminant Indicators
				Topsoil, dark brown	clayey silt, moist, soft	
		FP10_0.0-0.2				
0.20						
				EOH @0.2 (desire	ed depth achieved)	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~			
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
<u>Notes:</u>						

		Boring Log				
natior	ר	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: FP11
partn	ers	Project No: NP19039	Date d	rilled: 20/02/2020		Drill Rig Type: Shovel
Site Addre	ss: And	derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	V		Elevati	on:	NA	Hammer Type:
Logged By	/:AF + F	PN + MB	Total D	epth:0.2m	Bit Type:	Drill Crew:
					NA	
Depth (m)	Sample Type	Sample ID	Graphic Log	Litho Soil Group Name: mo density/consistency, grain	difier, color, moisture,	Contaminant Indicators
				Topsoil, dark brown	clayey silt, moist, soft	
		FP11 0.0-0.2				
0.20						
				EOH @0.2 (desir	ed depth achieved)	
<u>Notes:</u>						

		Boring Log				
natior	٦	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: FP12
partn	ers	Project Name: Tari Project No: NP19039	Date d	rilled: 20/02/2020	1	Drill Rig Type: Shovel
Site Addre	ss: And	derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSV	/		Elevati	on:	NA	Hammer Type:
Logged By	/:AF + F	PN + MB	Total D	<b>epth:</b> 0.2m	<b>Bit Type:</b> NA	Drill Crew:
â				Litho	logy	
Depth (m)	Sample Type	Sample ID	Graphic Log	Soil Group Name: mod density/consistency, grain	difier, color, moisture,	Contaminant Indicators
				Topsoil, dark brown	clayey silt, moist, soft	
		FP12_0.0-0.2				
0.20						
				EOH @0.2 (desire	ed depth achieved)	
<u>Notes:</u>				1		1

		Boring Log				
natior		Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: FP13
partn	ers	Project No: NP19039	Date d	rilled: 20/02/2020		Drill Rig Type: Shovel
Site Addre	ss: And	derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	/		Elevati	on:	NA	Hammer Type:
Logged By	/:AF + F	PN + MB	Total D	epth:0.2m	Bit Type:	Drill Crew:
					NA	
Depth (m)	Sample Type	Sample ID	Graphic Log	Litho Soil Group Name: mo density/consistency, grain	difier, color, moisture,	Contaminant Indicators
				Topsoil, dark brown	clayey silt, moist, soft	
		FP13_0.0-0.2				
0.20						
				EOH @0.2 (desir	ed depth achieved)	
		•••••••••••••••••••••••••••••••••••••••				
<u>Notes:</u>						

		Boring Log				
natior	٦	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: FP14
partn	ers	Project No: NP19039	Date d	rilled: 20/02/2020		Drill Rig Type: Shovel
Site Addre	ss: And	derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	V		Elevati	on:	NA	Hammer Type:
Logged By	/:AF + F	PN + MB	Total D	epth:0.2m	Bit Type:	Drill Crew:
					NA	
Depth (m)	Sample Type	Sample ID	Graphic Log	Litho Soil Group Name: mo density/consistency, grain	difier, color, moisture,	Contaminant Indicators
				Topsoil, dark brown	clayey silt, moist, soft	
		FP14_0.0-0.2				
0.20						
				EOH @0.2 (desir	ed depth achieved)	
<u>Notes:</u>						

		Boring Log				
natior	ר	Project Name: Tar	ro, NSW	1	Client: FRNSW	Boring No: FP15
partn	ers	Project No: NP19039	Date d	rilled: 20/02/2020		Drill Rig Type: Shovel
Site Addre	ss: And	derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	V		Elevati	on:	NA	Hammer Type:
Logged By	/:AF + F	PN + MB	Total D	epth:0.2m	Bit Type:	Drill Crew:
					NA	
Depth (m)	Sample Type	Sample ID	Graphic Log	Litho Soil Group Name: mo density/consistency, grain	difier, color, moisture,	Contaminant Indicators
				Topsoil, dark brown	clayey silt, moist, soft	
		FP15_0.0-0.2				
0.20						
				EOH @0.2 (desir	ed depth achieved)	
<u>Notes:</u>						

		Boring Log				
natior	ר	Project Name: Tar	ro, NSW		Client: FRNSW	Boring No: FP16
partn	ers	Project No: NP19039	Date d	rilled: 20/02/2020		Drill Rig Type: Shovel
Site Addre	ss: And	derson Drive,	Ground	dwater Depth: NA	Drilling Contractor:	Diameter:
Tarro, NSW	/		Elevati	on:	NA	Hammer Type:
Logged By	:AF + F	PN + MB	Total D	epth:0.2m	Bit Type:	Drill Crew:
					NA	
Depth (m)	Sample Type	Sample ID	Graphic Log	Litho Soil Group Name: mod density/consistency, grain	difier, color, moisture,	Contaminant Indicators
				Topsoil, dark brown	clayey silt, moist, soft	
			L			
0.20		FP16_0.0-0.2 + QC9	, 			
0.20						
				EOH @0.2 (desire	ed depth achieved)	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
						t
Notes:			I			
<u></u>						

Attachment 3 – Results Tables

Ref: NP19039 - FRNSW Tarro

Groundwater Field Parameters

		MW01	MW02	MW03
		17/2/20	17/2/20	19/2/19
		Water	Water	Water
Field Data	Units			
		Clear, slight orange /		Slightly turbid, brown
Observations		brown tinge	Clear, slight red tinge	red tinge
Standing Water Level	mbtoc	4.735	4.765	4.84
Casing Elevation	mAHD	9.105	7.415	8.07
Standing Water Level	mAHD	4.37	2.65	3.23
Temperature	Celcius	22	21.5	21.5
Dissolved Oxygen	%	9	8.2	30.1
Electrical Conductivity	µS/cm	21133	12867	19253
TDS	ppm	14566	8957	12707
рН		4.35	4.47	5.19
Redox Potential	mV	185	177.8	172.8

Surface Water Field Parameters

		SW01 17/1/20 Water	SW02 17/1/20 Water	SW03 12/12/19 Water	SW03 19/2/20 Water	SW04 12/12/19 Water	SW04 19/2/20 Water	SW05 17/1/20 Water	SW06 17/1/20 Water	SW07 19/2/20 Water	SW07a 19/2/20 Water	SW08 17/1/20 Water	SW09 17/1/20 Water	SW10 16/3/20 Water
Field Data Observations	Units	Clear, slight yellow tinge, flowing from northern pipe	Clear, slight brown, flowing into drain from both pipes (west and south)	Slightly turbid, light brown, largely stagnant with slight onshore breeze with ripples	Stagnant, yellow tinge, slightly turbid	Stagnant, slightly turbid	Stagnant water, slight swampy odour, brown tinge, slightly turbid	Brown, drain full of leaves and sediment	0, 0	Stagnant, slight yellow tinge	Stagnant, yellow / brown, slightly turbid, swampy odour	Water flowing (trickle), slight brown tinge, low water level	Water flowing, slightly brown, high water level	Water stagnant, light brown
Temperature	Celcius	23.6	23.1	23.5	27	22.4	26.6	23.6	26.9	25.1	28.1	25.3	25.8	-
Dissolved Oxygen	%	22.5	82	65.2	37.3	10.1	53	32.2	74.4	9.1	21.8	66.4	94.2	-
Electrical Conductivity	µS/cm	123.6	54.5	6.9	708	867	607	292.3	209.2	7235	742	78.4	133.6	-
рН		7.82	9.58	7.4	8.62	7.14	8.2	7.75	7.27	6.82	6.03	7.72	7.87	-
Redox Potential	mV	78.1	78.7	69.6	59.9	-118.2	648	60	87.1	-76.7	42.1	84.3	72.9	-

nation partners

																		FOS/PFOA																
		Perfluorodecanoic acid (PFDA)	Perfluorohexanoic acid (PFHxA)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	N-Ethyl perfluorooctane sulfonamide	N-ethyl- perfluorooctanesulf onamidoacetic acid	N- ethylperfluorooctan esulfonamidoethano	N-Methyl perfluor ooctane sulfonamide	N- methylperfluorooct ane	N- Methylperfluorooct anesulfonamidoetha Perfluorononanesulf	(PFNS)(trace) Perfluorobutane sulfonic acid (PFBS)	Perfluorobutanoic acid (PFBA)	Perfluorodecanesulf onic acid (PFDS)	Perfluorododecanoi c acid (PFDoDA)	Perfluoropropanesul fonic acid (PFPrS)	Perfluoroheptane sulfonic acid (PFHpS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	Perfluoroheptanoic acid (PFHpA)	Perfluorohexane sulfonic acid (PFHxS)	Perfluorononanoic acid (PFNA) Perfluorooctane	sulfonamide (PFOSA) Perfluorooctanesulf	onic acid (PFOS) Perfluoropentane	sulfonic acid (PFPeS) Perfluoropentanoic	acia (PrPeA) Perfluorotetradecan oic acid (PFTeDA)	Perfluorotridecanoi c acid (PFTrDA)	Perfluoroundecanoi c acid (PFUnDA)	Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	Sum of PFAS	Sum of PFAS (WA DER List)	Sum of PFHxS and PFOS	Sum of US EPA PFAS (PFOS + PFOA)*	6:2 Fluoroteiomer sulfonic acid (6:2 FTS)	Perfluorooctanoic acid (PFOA)
		mg/kg				mg/kg					mg/kg mg/k																	mg/kg			mg/kg		<u> </u>	mg/kg
EQL		0.005	0.005	0.005	0.005	0.005	0.01	0.005	0.005	0.01	0.005 0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005 0.	005 0.	005 0.	005 0.00	5 0.005	0.005	0.005	0.005	0.05	0.01	0.005	0.005	0.01	0.005
PFAS NEMP 2018 Table 2 H	Health Public open space Health Residential accessible soil																														1 0.009			10 0.1
	Interim EDE Public open space																						1								0.005			10
PFAS NEMP 2018 Table 3 In	Interim EIE Residential																					0	.01											
Field ID FP1 0.0-0.2	Date 20/2/20	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005 <0.005	5 < 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005 <0.	.005 0.0	064 <0.	005 <0.0	05 <0.005	<0.005	<0.005	0.0064	<0.05	<0.01	0.0064	0.0064	<0.01	<0.005
FP1_0.0-0.2	20/2/20		< 0.005	<0.005	<0.005	< 0.005	<0.01	< 0.005	<0.005	<0.01	<0.005 <0.005			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005				005 <0.0			< 0.005	0.0004	<0.05	0.047				<0.005
	20/2/20	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005 <0.005	5 <0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005 <0.	.005 0.	018 <0.	005 <0.0	05 <0.005	<0.005	<0.005	0.018	<0.05	0.018	0.018	0.018	<0.01	<0.005
FP4_0.0-0.2	20/2/20		<0.005	<0.005	<0.005	<0.005	<0.01		<0.005	<0.01	<0.005 <0.005			<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005 <0.			005 <0.0			<0.005	0.0069	<0.05					<0.005
FP5_0.0-0.2	20/2/20		< 0.005	<0.005	<0.005	< 0.005	<0.01	<0.005	<0.005	<0.01	<0.005 <0.005			< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005				005 <0.0		<0.005	<0.005	0.021	<0.05					<0.005
FP6_0.0-0.2 FP7 0.0-0.2	20/2/20 20/2/20		<0.005 <0.005	<0.005	<0.005 <0.005	<0.005	<0.01 <0.01	<0.005 <0.005	<0.005 <0.005	<0.01 <0.01	<0.005 <0.005 <0.005 0.012			<0.005 0.019	<0.005 <0.005	<0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 0.0087	<0.005 <0.			005 <0.0 005 <0.0		<0.005 <0.005	<0.005 0.0097	0.025 0.1187	<0.05 0.1594					<0.005 <0.005
FP8_0.0-0.2	20/2/20		< 0.005	<0.005	<0.005	<0.005	<0.01		< 0.005	<0.01	<0.005 <0.005			< 0.005	< 0.005		<0.005	<0.005	<0.005	< 0.005				005 <0.0			< 0.005	0.1107	0.13	0.14				<0.005
FP9_0.0-0.2	20/2/20	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.01	< 0.005	<0.005	<0.01	<0.005 <0.005	6 < 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005 <0.	.005 0.	033 <0.	005 <0.0	05 <0.005	< 0.005	<0.005	0.033	<0.05	0.033	0.033	0.033	<0.01	< 0.005
FP10_0.0-0.2	20/2/20		<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005 <0.005			<0.005	<0.005	<0.005		<0.005	<0.005	<0.005				005 <0.0		<0.005	<0.005	0.15	0.15	0.15				<0.005
FP11_0.0-0.2	20/2/20		< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	<0.01	<0.005 <0.005			< 0.005	< 0.005	< 0.005		< 0.005	< 0.005	< 0.005	<0.005 <0.			005 <0.0			< 0.005	0.02	< 0.05	0.02				< 0.005
FP12_0.0-0.2 FP13_0.0-0.2	20/2/20 20/2/20		<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.01 <0.01	<0.005 <0.005	<0.005 <0.005	<0.01 <0.01	<0.005 <0.005 <0.005			<0.005	<0.005 <0.005	< 0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.			005 <0.0 005 <0.0			<0.005 <0.005	<0.005 <0.005	<0.05 <0.05					<0.005 <0.005
FP14_0.0-0.2	20/2/20		< 0.005	< 0.005		< 0.005	<0.01		<0.005	<0.01	<0.005 <0.005			< 0.005	<0.005		< 0.005	< 0.005	<0.005	< 0.005	<0.005 <0.			005 <0.0			<0.005	<0.005	<0.05					<0.005
FP15_0.0-0.2	20/2/20		< 0.005	<0.005	< 0.005	< 0.005	<0.01	< 0.005	< 0.005	<0.01	<0.005 <0.005			< 0.005	< 0.005	< 0.005		< 0.005	< 0.005	<0.005				005 <0.0		< 0.005	<0.005	< 0.005	<0.05					<0.005
FP16_0.0-0.2	20/2/20	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.01	< 0.005	<0.005	<0.01	<0.005 <0.005	6 < 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005 <0.	.005 <0	.005 <0.	005 <0.0	05 <0.005	<0.005	<0.005	<0.005	<0.05	<0.01	<0.005	<0.005	<0.01	<0.005
S16A_0.2-0.4	19/2/20	<0.005	0.03	<0.005	<0.005	<0.005	<0.01		<0.005	<0.01	<0.005 0.015			<0.005	<0.005		0.0098	<0.005	0.015	0.063	0.018 <0.			058 0.03			<0.005	2.282					<0.01	0.019
S16A_0.4-0.6	19/2/20	< 0.005	0.032	< 0.005	<0.005	< 0.005	< 0.01	< 0.005	< 0.005	<0.01	<0.005 0.0074			< 0.005	< 0.005	< 0.005		<0.005	0.013	0.052				063 0.0			<0.005	1.969	2.1127					0.017
S16B_0.2-0.4 S16B 0.4-0.6	19/2/20 19/2/20		0.016	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.01 <0.01		<0.005 <0.005	<0.01 <0.01	<0.005 0.017 <0.005 <0.005			0.018	<0.005 <0.005	< 0.005	<0.005 <0.005	<0.005 <0.005	0.0076		0.0097 <0.			005 0.02 005 0.0			<0.005 <0.005	0.606	0.7089 0.7084	0.6642				0.0060
S16C_0.2-0.4	19/2/20		< 0.005	<0.005	<0.005	< 0.005	<0.01	< 0.005	<0.005	<0.01	<0.005 <0.005			< 0.005	< 0.005	< 0.005		<0.005	<0.005					005 0.00		< 0.005	<0.005	0.1758						< 0.005
	19/2/20		0.011	<0.005	<0.005	<0.005	<0.01	< 0.005	<0.005	<0.01	<0.005 <0.005			< 0.005	<0.005		< 0.005	<0.005	0.0058		0.0052 <0.	.005 0	.15 <0.	005 0.01			<0.005	0.1598	0.1988		0.1598	0.15	<0.01	<0.005
S28(0.0-0.2)	22/1/20		<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005 <0.005			<0.005	<0.005	<0.005		<0.005	<0.005	<0.005				005 0.01			<0.005	0.062	0.073					<0.005
S28(0.2-0.4)	22/1/20	< 0.005	0.02	< 0.005	< 0.005	< 0.005	< 0.01		< 0.005	<0.01	<0.005 <0.005			< 0.005	<0.005		< 0.005	< 0.005	0.027	0.034	<0.005 <0.			005 0.02			< 0.005	0.226					<0.01	0.012
S29(0.0-0.2) S29(0.2-0.4)	22/1/20 22/1/20	<0.005 <0.005	0.02	<0.005	<0.005 <0.005	<0.005 <0.005	<0.01 <0.01	<0.005 <0.005	<0.005 <0.005	<0.01	<0.005 0.034 <0.005 0.0089		<0.005 <0.005	0.018	<0.005 <0.005	<0.005	0.012	<0.005 <0.005	<0.005 <0.005	0.062				066 0.00 005 0.00		<0.005 <0.005	<0.005 <0.005	1.476 0.8462	1.5875 0.8907				<0.01 <0.01	0.014 0.0092
S29(0.4-0.6)	22/1/20	<0.005	0.014	<0.005	<0.005	<0.005	<0.01	< 0.005	<0.005	<0.01	<0.005 <0.005		< 0.005	< 0.005	< 0.005			<0.005	0.018	0.22				026 0.01		< 0.005	<0.005	1.32	1.5591	1.43	1.21		<0.01	0.11
S29(0.6-0.8)	22/1/20	< 0.005	0.077	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	< 0.005	<0.01	<0.005 <0.005		< 0.005	< 0.005	< 0.005	0.011	0.018	< 0.005	0.034	0.38				0.01		< 0.005	< 0.005	1.063	1.3423	1.249			<0.01	0.043
S29(0.8-1.0)	22/1/20	< 0.005	0.05	<0.005	<0.005	<0.005	<0.01		< 0.005	<0.01	<0.005 <0.005			<0.005	<0.005			<0.005	0.017	0.17	<0.005 <0			0.01			<0.005	0.413	0.5989				<0.01	0.023
S30(0.0-0.2)	22/1/20		< 0.005	< 0.005	<0.005	<0.005	< 0.01	< 0.005	<0.005	<0.01	<0.005 <0.005			<0.005	<0.005	<0.005		<0.005	< 0.005	0.0095				005 <0.0			<0.005	0.3495	0.3495		0.3495	0.34	<0.01	< 0.005
S30(0.2-0.4) S30(0.4-0.6)	22/1/20 22/1/20		0.0100	<0.005	<0.005 <0.005	<0.005	<0.01 <0.01	<0.005 <0.005	<0.005 <0.005	<0.01 <0.01	<0.005 <0.005 <0.005 <0.005			<0.005 <0.005	<0.005 <0.005	<0.005 <0.005		<0.005 <0.005	0.0067	0.042	<0.005 <0.			005 0.00 005 0.00		<0.005 <0.005	<0.005 <0.005	0.597 0.57	0.6347 0.612				<0.01 <0.01	0.025
S30(0.6-0.8)	22/1/20		0.0012	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	<0.005	<0.01	<0.003 <0.003			< 0.005	<0.005	< 0.005		< 0.005	0.0072	0.055				005 0.00			< 0.005	0.37	0.612					0.027
S31(0.0-0.2)	22/1/20		< 0.005	< 0.005	< 0.005	< 0.005	<0.01		< 0.005	<0.01	<0.005 <0.005			< 0.005	< 0.005		< 0.005	< 0.005	< 0.005	< 0.005	<0.005 <0.			005 <0.0			<0.005	0.031	<0.05					<0.005
\$31(0.2-0.4)	22/1/20	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005 <0.005			<0.005	<0.005	<0.005		<0.005	<0.005	<0.005				005 <0.0			<0.005	<0.005	<0.05			<0.005		<0.005
S32(0.0-0.2)	22/1/20	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	<0.005 <0.005			< 0.005	< 0.005	< 0.005	-	< 0.005	< 0.005	0.021				005 <0.0			< 0.005	1.001	1.0094	1.001	1.001			< 0.005
S32(0.2-0.4) S33(0.0-0.2)	22/1/20 22/1/20	<0.005 <0.005		_	<0.005 <0.005	<0.005 <0.005		<0.005 <0.005	<0.005 <0.005	<0.01 <0.01		5 <0.005	<0.005	<0.005 <0.005	<0.005 <0.005			<0.005 <0.005	<0.005 0.0090		<0.005 <0.				05 <0.005 64 <0.005		<0.005 <0.005	0.944 2.719	0.9521 2.8793			0.92 2.569		<0.005 0.069
S33(0.2-0.4)	22/1/20	<0.005				< 0.005			< 0.005				< 0.005		<0.005				< 0.0090		<0.005 <0.				05 <0.005			-		2.7694				0.089
S33A(0.6-0.8)	22/1/20	< 0.005				< 0.005				<0.01		5 0.049						<0.005	0.016		<0.005 <0				78 <0.005					1.3188				0.047
S34_0.0-0.2	19/2/20	<0.005			<0.005	<0.005		<0.005	<0.005	<0.01		5 <0.005		<0.005			<0.005	<0.005			<0.005 <0.				05 <0.005		<0.005	0.38	0.38					<0.005
\$34_0.2-0.4	19/2/20		< 0.005		<0.005	< 0.005	<0.01		< 0.005	<0.01	<0.005 <0.005			<0.005			< 0.005	<0.005			<0.005 <0.				05 <0.005		< 0.005	0.2755		0.2755				< 0.005
SD02	17/1/20	<0.005		<0.005		< 0.005			<0.005	<0.01		5 <0.005 5 <0.005		< 0.005			< 0.005	< 0.005			<0.005 <0				05 <0.005		<0.005	<0.005 0.0054	<0.05 <0.05					<0.005
SD05 SD10	17/1/20 16/3/20	<0.005 <0.005				<0.005		<0.005 <0.005	<0.005 <0.005	<0.01 <0.01			<0.005 <0.005	<0.005 <0.005			<0.005 <0.005	<0.005 <0.005			<0.005 <0.				05 <0.005 05 <0.005			0.0054	<0.05		0.0054 0.0062			<0.005 <0.005
TARRO PIT 1	20/2/20	< 0.005				0.0052				<0.01			<0.005				< 0.005				<0.005 <0.				05 <0.005					0.016				<0.005
TARRO_PIT 2	20/2/20									<0.01			<0.005	< 0.005			< 0.005	<0.005			<0.005 <0.				0.005					0.034				<0.005
<u></u>				•	•		•	•					•													•	•						<u>+</u>	

Environmental Standards HEPA, Jan 2018, PFAS NEMP 2018 Table 2 Health Public open space HEPA, Jan 2018, PFAS NEMP 2018 Table 2 Health Residential accessible soil HEPA, Jan 2018, PFAS NEMP 2018 Table 3 Interim EDE Public open space HEPA, Jan 2018, PFAS NEMP 2018 Table 3 Interim EIE Residential

nation partners

																		PFOS/PFC	A																
	Perfluorodecanoic acid (PFDA)	Perfluorohexanoic acid (PFHxA)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	N-Ethyl perfluorooctane sulfonamide (NEtFOSA)	N-ethyl- perfluorooctanesulfonami doacetic acid (NEtFOSAA)	N- ethylperfluorooctanesulfo namidoethanol (NEtFOSE)	N-Methyl perfluorooctane sulfonamide (NMeFOSA)	N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	N- Methylperfluorooctanesulf onamidoethanol (N-	Perfluorononanesulfonic acid (PFNS)(trace)	Perfluorobutane sulfonic acid (PFBS)	Perfluorobutanoic acid (PFBA)	Perfluorodecanesulfonic acid (PFDS)	Perfluorododecanoic acid (PFDoDA)	Perfluoropropanesulfonic acid (PFPrS)	Perfluoroheptane sulfonic acid (PFHpS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	Perfluoroheptanoic acid (PFHpA)	Perfluorohexane sulfonic acid (PFHxS)	Perfluorononanoic acid (PFNA)	Perfluorooctane sulfonamide (PFOSA)	Perfluorooctanesulfonic acid (PFOS)	Perfluoropentane sulfonic acid (PFPeS)	Perfluoropentanoic acid (PFPeA)	Perfluorotetradecanoic acid (PFTeDA)	Perfluorotridecanoic acid (PFTrDA)	Perfluoroundecanoic acid (PFUnDA)	Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	Sum of PFAS	Sum of PFAS (WA DER List)	Sum of PFHxS and PFOS	Sum of US EPA PFAS (PFOS + PFOA)*	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	Perfluorooctanoic acid (PFOA)
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
EQL	0.01	0.01	0.01	0.01	0.05	0.05	0.05	0.05	0.05	0.05	0.01	0.01	0.05	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.05	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.1	0.05	0.01	0.01	0.05	0.01
Guidance on Per and Polyfluoroalkyl (PFAS) in Recreationa	l Water																															2			10
PFAS NEMP 2018 Table 1 Health Drinking Water																																0.07			0.56
PFAS NEMP 2018 Table 5 Freshwater 95%																							0.13												220
PFAS NEMP 2018 Table 5 Freshwater 99%																							0.00023												19

Field ID	Date																																			
MW01	20/2/20	< 0.01	<0.01	< 0.01	< 0.01	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.01	< 0.01	<0.05	< 0.01	< 0.01	<0.01	< 0.01	< 0.00001	< 0.01	<0.01	<0.01	<0.05	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.1	<0.05	<0.01	<0.01	<0.05	< 0.01
MW02	20/2/20	< 0.01	0.11	< 0.01	< 0.01	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.01	0.06	0.06	< 0.01	< 0.01	0.02	< 0.01	<0.01	0.02	0.17	<0.01	<0.05	0.09	0.04	0.10	< 0.01	< 0.01	< 0.01	0.27	0.68	0.62	0.26	0.1	<0.05	0.01
MW03	20/2/20	< 0.01	<0.01	< 0.01	< 0.01	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.01	< 0.01	<0.05	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	0.01	<0.01	<0.05	0.02	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03	<0.1	<0.05	0.03	0.02	<0.05	< 0.01
SW01	17/1/20	< 0.01	0.34	< 0.01	< 0.01	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.01	0.09	0.21	< 0.01	< 0.01	0.03	0.01	< 0.01	0.11	0.20	0.02	<0.05	0.44	0.06	0.80	< 0.01	< 0.01	< 0.01	0.7	2.37	2.25	0.64	0.5	<0.05	0.06
SW02	17/1/20	< 0.01	<0.01	< 0.01	< 0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	< 0.01	<0.05	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.05	<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	0.01	<0.1	<0.05	<0.01	0.01	<0.05	0.01
SW03	19/2/20	< 0.01	0.02	< 0.01	< 0.01	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.01	0.01	< 0.05	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.06	< 0.01	<0.05	0.08	<0.01	0.02	< 0.01	< 0.01	< 0.01	0.15	0.2	0.2	0.14	0.09	<0.05	0.01
SW04	19/2/20	< 0.01	0.02	< 0.01	< 0.01	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.01	0.01	< 0.05	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.06	< 0.01	<0.05	0.08	<0.01	0.02	< 0.01	< 0.01	<0.01	0.14	0.19	0.19	0.14	0.08	<0.05	< 0.01
SW05	17/1/20	< 0.01	0.04	< 0.01	< 0.01	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.01	< 0.01	< 0.05	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	0.01	0.01	< 0.01	<0.05	0.04	<0.01	0.07	< 0.01	< 0.01	<0.01	0.07	0.19	0.19	0.05	0.06	<0.05	0.02
SW06	17/1/20	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.01	< 0.01	< 0.05	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.05	0.03	<0.01	0.05	< 0.01	< 0.01	< 0.01	0.03	<0.1	0.08	0.03	0.03	<0.05	< 0.01
SW07	19/2/20	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.01	0.02	< 0.05	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.03	< 0.01	<0.05	0.02	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.05	<0.1	0.07	0.05	0.02	<0.05	< 0.01
SW07A	19/2/20	< 0.01	0.03	< 0.01	< 0.01	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.01	0.01	< 0.05	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.07	< 0.01	<0.05	0.05	<0.01	0.02	< 0.01	< 0.01	<0.01	0.13	0.19	0.19	0.12	0.06	<0.05	0.01
SW08	17/1/20	< 0.01	< 0.01	< 0.01	< 0.01	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.01	< 0.01	< 0.05	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.05	0.01	<0.01	0.03	< 0.01	< 0.01	<0.01	0.01	<0.1	<0.05	0.01	0.01	<0.05	< 0.01
SW09	17/1/20	< 0.01	< 0.01	< 0.01	< 0.01	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.01	< 0.01	< 0.05	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.05	0.01	<0.01	0.02	< 0.01	< 0.01	<0.01	0.02	<0.1	<0.05	0.01	0.02	<0.05	0.01
SW10	16/3/20	< 0.01	0.16	< 0.01	< 0.01	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.01	0.06	0.05	< 0.01	< 0.01	0.02	0.03	< 0.01	0.04	0.38	0.02	<0.05	1.2	0.05	0.14	< 0.01	< 0.01	< 0.01	1.62	2.19	2.07	1.58	1.24	<0.05	0.04
TARRO_PIT 1	19/2/20	< 0.01	0.05	< 0.01	< 0.01	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.01	0.02	<0.05	< 0.01	< 0.01	0.01	< 0.01	<0.01	0.02	0.07	<0.01	<0.05	0.07	0.01	0.03	< 0.01	< 0.01	< 0.01	0.17	0.31	0.29	0.14	0.1	<0.05	0.03
TARRO_PIT 2	19/2/20	<0.01	0.14	< 0.01	<0.01	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.01	0.10	0.06	< 0.01	< 0.01	0.05	<0.01	<0.01	0.04	0.34	<0.01	<0.05	0.14	0.06	0.08	< 0.01	< 0.01	< 0.01	0.52	1.05	0.94	0.48	0.18	<0.05	0.04

Environmental Standards National Health and Medical Research Council, 2019, Guidance on Per and Polyfluoroalkyl (PFAS) in Recreational Water HEPA, Jan 2018, PFAS NEMP 2018 Table 1 Health Drinking Water HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 95% HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 99%

nation partners

nation partners

		PF	AS	
	Sum of PFHxS and	PFOS	Perfluorooctanoic	acid (PFOA)
	mg/kg	μg/L	mg/kg	μg/L
EQL	0.0005	0.01	0.0003	0.01
NSW 2014 General Solid Waste SCC1 (with leached)	1.8		18	
NSW 2014 General Solid Waste TCLP1 (leached)		50		500
NSW 2014 Restricted Solid Waste SCC2 (with leached)	7.2		72	
NSW 2014 Restricted Solid Waste TCLP2 (leached)		200		2,000

Field ID	Date				
S8 (0.0-0.2)	30/9/19	1.09		0.078	
S8 (0.0-0.2)	30/9/19		27.2		1.6
S16 (0.2-0.4)	1/10/19	2.234		0.01	
S16 (0.2-0.4)	1/10/19		60.1		0.26
S16 (0.4-0.6)	1/10/19	5.096		0.04	
S16 (0.4-0.6)	1/10/19		144.4		2.2
\$16A_0.2-0.4	19/2/20	2.263			0.019
\$16A_0.4-0.6	19/2/20	1.952			0.017
S16B_0.2-0.4	19/2/20	0.6			0.0060
S16B_0.4-0.6	19/2/20	0.632			0.0078
S16C_0.2-0.4	19/2/20	0.1758			<0.005
S16C_0.4-0.6	19/2/20	0.1598			<0.005
\$33(0.2-0.4)	22/1/20	2.51		0.015	
\$33(0.2-0.4)	22/1/20		41.8		0.47
SP4-1_0.1	23/9/19	1.12		0.0052	
SP4-1_0.1	23/9/19		29.93		0.21
SP4-1_1.0	23/9/19	0.294		<0.005	
SP4-1_1.0	23/9/19		12		0.17

Environmental Standards NSW EPA, November 2014

			Heavy Metal PAH TPH														Vola	atile	
		Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Lead	Mercury	Nickel	Zinc	Benzo(a) pyrene	Benzo(a) pyrene	PAHs (Sum of total)	62-93	C10-C36 (Sum of total)	Benzene	Toluene	Ethylbenzene	Xylene Total
I		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL		2	0.4	5	5	5	0.01	0.1	5	5	0.5	0.001	0.5	20	50	0.1	0.1	0.1	0.3
NSW 2014 General Sol	lid Waste CT1	100	20	100		100		4	40		0.8					10	288	600	1000
NSW 2014 General Sol	NSW 2014 General Solid Waste SCC1 (with leached)		100			1,500		50	1,050		10		200	650	10,000	18	518	1,080	1,800
NSW 2014 General Sol	lid Waste TCLP1 (leached)						5					0.04							
NSW 2014 Restricted S	Solid Waste SCC2 (with leached)	2,000	400			6,000		200	4,200		23		800	2,600	40,000	72	2,073	4,320	7,200
NSW 2014 Restricted S	Solid Waste TCLP2 (leached)						20					0.16							
Field ID	Date																		
S7 (0.0-0.2)	30/9/19	8.7	0.5	20	71	65		<0.1	12	290	<0.5		0.5	<20	<50	<0.1	<0.1	<0.1	<0.3
S7 (0.4-0.6)	30/9/19	5.4	<0.4	29	<5	14		<0.1	6.3	23	<0.5		<0.5	<20	<50	<0.1	<0.1	<0.1	<0.3
S28(0.0-0.2)	22/1/20	4.9	<0.4	14	16	75		<0.1	7.6	81	<0.5		<0.5	<20	87	<0.1	<0.1	<0.1	<0.3
S29(0.0-0.2)	22/1/20	8.3	<0.4	14	24	77		0.1	17	130	<0.5		1.1	<20	<50	<0.1	<0.1	<0.1	<0.3
S32(0.0-0.2)	22/1/20	8.6	0.6	13	63	220		0.2	10	510	<0.5		2.8	<20	119	<0.1	<0.1	<0.1	<0.3
S32(0.0-0.2)	22/1/20						0.69					< 0.001							
\$33(0.0-0.2)	22/1/20	4.6	<0.4	21	<5	19		<0.1	5.2	37	<0.5		<0.5	<20	<50	<0.1	<0.1	<0.1	<0.3

Environmental Standards

NSW EPA, November 2014

nation partners

EQL

Field or Interlab Duplicates

																	PFOS/PFOA	1																
Perfluorodecanoic acid (PFDA)	Perfluorohexanoic acid (PFHxA)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	N-Ethyl perfluorooctane sulfonamide (NEtFOSA)	N-ethyl- N-ethyl- perfluorooctanesulf ona midoacetic acid (NEtFOSAA)	N- ethylperfluorooctan esulfonamidoethano I (NETFOSE)	N-Methyl perfluorooctane sulfonamide (NMAFOSA)	N- methylperfluorooct ane	M- N- Methylperfluorooct anesulfonamidoetha	Perfluorononanesulf onic acid (PFNS)(trace)	Perfluorobutane sulfonic acid (PFBS)	Perfluorobutanoic acid (PFBA)	Perfluorodecanesulf onic acid (PFDS)	Perfluorododecanoi c acid (PFDoDA)	Perfluoropropanesul fonic acid (PFPrS)	Perfluoroheptane sulfonic acid (PFHpS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	Perfluoroheptanoic acid (PFHpA)	Perfluorohexane sulfonic acid (PFHxS)	Perfluorononanoic acid (PFNA)	Perfluorooctane sulfonamide (PFOSA)	Perfluorooctanesulf onic acid (PFOS)	Perfluoropentane sulfonic acid (PFPeS)	Perfluoropentanoic acid (PFPeA)	Perfluorotetradecan oic acid (PFTeDA)	Perfluorotridecanoi c acid (PFTrDA)	Perfluoroundecanoi c acid (PFUnDA)	Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	Sum of PFAS	Sum of PFAS (WA DER List)	Sum of PFHxS and PFOS	Sum of US EPA PFAS (PFOS + PFOA)*	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	Perfluorooctanoic acid (PFOA)
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
0.005	0.005	0.005	0.005	0.005	0.01	0.005	0.005	0.01	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.05	0.01	0.005	0.005	0.01	0.005

Lab Report Number Field ID Matrix Type Date

Lub Report Num		INIGULAR TYPE	Dute																																			
698668	S32(0.0-0.2)	soil	22/1/20	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.01	<0.005	<0.005	<0.01	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	0.0084	<0.005	<0.005	0.021	<0.005	< 0.005	0.98	<0.005	<0.005	<0.005	<0.005	<0.005	1.001	1.0094	1.001	1.001	0.98	< 0.01	< 0.005
698668	QC1	soil	22/1/20	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.01	<0.005	<0.005	<0.01	<0.005	0.011	<0.005	<0.005	<0.005	<0.005	<0.005	0.0074	<0.005	< 0.005	0.02	<0.005	<0.005	1.2	<0.005	< 0.005	< 0.005	< 0.005	<0.005	1.22	1.2384	1.22	1.22	1.2	< 0.01	<0.005
RPD				0	0	0	0	0	0	0	0	0	0	75	0	0	0	0	0	13	0	0	5	0	0	20	0	0	0	0	0	20	20	20	20	20	0	0
703149	\$16A_0.4-0.6	soil	19/2/20	<0.005	0.032	<0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	<0.01	<0.005	0.0074	0.0082	0.0078	<0.005	<0.005	<0.005	0.011	< 0.005	0.013	0.052	0.018	< 0.005	1.9	0.0063	0.04	<0.005	<0.005	<0.005	1.969	2.1127	2.07	1.952	1.917	< 0.01	0.017
703149	QC4	soil	19/2/20	<0.005	0.05	<0.005	< 0.005	<0.005	< 0.01	<0.005	<0.005	<0.01	< 0.005	0.013	0.011	0.0083	<0.005	<0.005	<0.005	0.027	<0.005	0.024	0.12	0.043	<0.005	2.9	0.0097	0.046	< 0.005	< 0.005	<0.005	3.061	3.293	3.2003	3.02	2.941	< 0.01	0.041
RPD				0	44	0	0	0	0	0	0	0	0	55	29	6	0	0	0	84	0	59	79	82	0	42	43	14	0	0	0	43	44	43	43	42	0	83
703149	FP16_0.0-0.2	soil	20/2/20	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.05	< 0.01	<0.005	<0.005	< 0.01	<0.005
703149	QC9	soil	20/2/20	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.01	<0.005	<0.005	<0.01	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.05	< 0.01	<0.005	<0.005	< 0.01	<0.005
RPD				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

*RPDs have only been considered where a concentration is greater than 1 times the EQL. **Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL) ***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

nation partners

Attachment 4 – Laboratory Certificates

Ref: NP19039 - FRNSW Tarro

🛟 eurofins

Environment Testing

Nation Partners 306 / 50 Holt Street, Surry Hills **NSW 2010**

ųi WORLD RECOGNISED alutal

NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Luke Clements

Report Project name Project ID **Received Date**

697518-S **FRNSW - TARRA** NP19039 Jan 17, 2020

Client Sample ID			SD02	SD05
Sample Matrix			Soil	Soil
Eurofins Sample No.			B20-Ja15833	B20-Ja15834
Date Sampled			Jan 17, 2020	Jan 17, 2020
Test/Reference	LOR	Unit		
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	8.2	7.3
Total Organic Carbon	0.1	%	0.4	12
% Moisture	1	%	15	80
Perfluoroalkyl carboxylic acids (PFCAs)				
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5
13C4-PFBA (surr.)	1	%	85	74
13C5-PFPeA (surr.)	1	%	102	81
13C5-PFHxA (surr.)	1	%	86	75
13C4-PFHpA (surr.)	1	%	83	84
13C8-PFOA (surr.)	1	%	89	86
13C5-PFNA (surr.)	1	%	91	83
13C6-PFDA (surr.)	1	%	107	97
13C2-PFUnDA (surr.)	1	%	114	103
13C2-PFDoDA (surr.)	1	%	114	102
13C2-PFTeDA (surr.)	1	%	122	98
Perfluoroalkyl sulfonamido substances				
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	5	ug/kg	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10

Client Sample ID			SD02	SD05
Sample Matrix			Soil	Soil
Eurofins Sample No.			B20-Ja15833	B20-Ja15834
Date Sampled			Jan 17, 2020	Jan 17, 2020
Test/Reference	LOR	Unit	,	,
Perfluoroalkyl sulfonamido substances	Lon	Onic		
N-methyl-perfluorooctanesulfonamidoacetic acid (N-				-
MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10
13C8-FOSA (surr.)	1	%	81	70
D3-N-MeFOSA (surr.)	1	%	80	68
D5-N-EtFOSA (surr.)	1	%	88	76
D7-N-MeFOSE (surr.)	1	%	95	75
D9-N-EtFOSE (surr.)	1	%	72	62
D5-N-EtFOSAA (surr.)	1	%	84	78
D3-N-MeFOSAA (surr.)	1	%	80	66
Perfluoroalkyl sulfonic acids (PFSAs)	1			
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	< 5	5.4
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5
13C3-PFBS (surr.)	1	%	87	74
18O2-PFHxS (surr.)	1	%	85	82
13C8-PFOS (surr.)	1	%	78	80
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)				
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N15}	5	ug/kg	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	65	88
13C2-6:2 FTSA (surr.)	1	%	132	124
13C2-8:2 FTSA (surr.)	1	%	85	80
PFASs Summations				
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	5.4
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	5.4
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	5.4
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Jan 23, 2020	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Total Organic Carbon	Melbourne	Jan 23, 2020	28 Days
- Method: LTM-INO-4060 Total Organic Carbon in water and soil			
% Moisture	Brisbane	Jan 20, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Jan 20, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Jan 20, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Jan 20, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Jan 20, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

🛟 eurofins 👔				Austral	ia						New Zealand			
1	50 005 085 521	web : www.eurofin		nment Te ail : EnviroSales@eur	esting	Melbour Monter Dandenc Phone : - NATA # Site # 12	ey Road ng Sout ⊦61 3 85 1261	th VIC 3 564 5000	175)	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch Phone : 0800 856 450 IANZ # 1290
	mpany Name: dress:	Nation Partn 306 / 50 Holt Surry Hills NSW 2010					R¢ Pl	rder N eport hone: ax:		697518 0405 821 580		Received: Due: Priority: Contact Name:	Jan 17, 2020 3:00 F Jan 24, 2020 5 Day Luke Clements	M,
	ject Name: ject ID:	FRNSW - TA NP19039	ARRA									Eurofins Analytica	l Services Manager : U	Irsula Long
		Sa	mple Detail			pH (1:5 Aqueous extract at 25°C as rec.)	Total Organic Carbon	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)					
lelb	ourne Laborate	ory - NATA Site	# 1254 & 142	271		Х	X							
		- NATA Site # 1								_				
		y - NATA Site #						Х	Х	_				
		NATA Site # 237	736							_				
No	rnal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					_				
	SW01	Jan 17, 2020		Water	B20-Ja15827				Х					
	SW02	Jan 17, 2020		Water	B20-Ja15828	1			Х					
	SW05	Jan 17, 2020		Water	B20-Ja15829	1			Х	_				
	SW06	Jan 17, 2020		Water	B20-Ja15830				Х	4				
	SW08	Jan 17, 2020		Water	B20-Ja15831				Х	4				
	SW09	Jan 17, 2020		Water	B20-Ja15832				Х	4				
	SD02	Jan 17, 2020		Soil	B20-Ja15833	Х	X	Х	Х	4				
3	SD05	Jan 17, 2020		Soil	B20-Ja15834	Х	Х	Х	Х					
Fest	Counts					2	2	2	8					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		-	· · ·			
Total Organic Carbon	%	< 0.1		0.1	Pass	
Method Blank						
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	ug/kg	< 5		5	Pass	
Perfluoropentanoic acid (PFPeA)	ug/kg	< 5		5	Pass	
Perfluorohexanoic acid (PFHxA)	ug/kg	< 5		5	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/kg	< 5		5	Pass	
Perfluorooctanoic acid (PFOA)	ug/kg	< 5		5	Pass	
Perfluorononanoic acid (PFNA)	ug/kg	< 5		5	Pass	
Perfluorodecanoic acid (PFDA)	ug/kg	< 5		5	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/kg	< 5		5	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/kg	< 5		5	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/kg	< 5		5	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/kg	< 5		5	Pass	
Method Blank						
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)	ug/kg	< 5		5	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/kg	< 5		5	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/kg	< 5		5	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N- MeFOSE)	ug/kg	< 5		5	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/kg	< 5		5	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/kg ug/kg	< 10		10	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/kg	< 10		10	Pass	
Method Blank	ug/kg			10	газэ	
Perfluoroalkyl sulfonic acids (PFSAs)		1		1	[
Perfluorobutanesulfonic acid (PFBS)	ug/kg	< 5		5	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/kg ug/kg	< 5		5	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/kg ug/kg	< 5		5	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/kg ug/kg	< 5		5	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/kg ug/kg	< 5		5	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg ug/kg	< 5		5	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/kg ug/kg	< 5		5	Pass	
Perfluorodecanesulfonic acid (PFDS)		< 5		5	Pass	
Method Blank	ug/kg	< 0		5	F 455	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)					1	
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/kg	< 5		5	Pass	
	ug/kg			10		
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/kg	< 10			Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/kg	< 5		5	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/kg	< 5		5	Pass	
LCS - % Recovery	0/	00		70.400		
Total Organic Carbon	%	93		70-130	Pass	
LCS - % Recovery						
Perfluoroalkyl carboxylic acids (PFCAs)	<u>c</u> ′	400		50.450	D .	
Perfluorobutanoic acid (PFBA)	%	102		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	87		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	104		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	110		50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	103		50-150	Pass	
Perfluorononanoic acid (PFNA)	%	98		50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	101		50-150	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Perfluoroundecanoic acid (PFUnDA)			%	111	50-150	Pass	
Perfluorododecanoic acid (PFDoDA))		%	98	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)			%	115	50-150	Pass	
Perfluorotetradecanoic acid (PFTeD	A)		%	107	50-150	Pass	
LCS - % Recovery							
Perfluoroalkyl sulfonamido substa	nces						
Perfluorooctane sulfonamide (FOSA)		%	99	50-150	Pass	
N-methylperfluoro-1-octane sulfonar	nide (N-MeFOSA)		%	103	50-150	Pass	
N-ethylperfluoro-1-octane sulfonami	de (N-EtFOSA)		%	99	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfor MeFOSE)	namido)-ethanol (N	-	%	92	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfona	mido)-ethanol (N-E	tFOSE)	%	94	50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoa	acetic acid (N-EtFC)SAA)	%	104	50-150	Pass	
N-methyl-perfluorooctanesulfonamic			%	101	50-150	Pass	
LCS - % Recovery	, , , , , , , , , , , , , , , , , , ,						
Perfluoroalkyl sulfonic acids (PFS)	As)						
Perfluorobutanesulfonic acid (PFBS)			%	89	50-150	Pass	
Perfluorononanesulfonic acid (PFNS			%	118	50-150	Pass	
Perfluoropropanesulfonic acid (PFP	·S)		%	110	50-150	Pass	
Perfluoropentanesulfonic acid (PFPe			%	108	50-150	Pass	
Perfluorohexanesulfonic acid (PFHx	,		%	102	50-150	Pass	
Perfluoroheptanesulfonic acid (PFH	/		%	111	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS	,		%	106	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS	· · · · · · · · · · · · · · · · · · ·		%	107	50-150	Pass	
LCS - % Recovery	/				 		
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfor			%	105	50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfon			%	79	50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfor			%	106	50-150	Pass	
1H.1H.2H.2H-perfluorododecanesul		SA)	%	88	50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1			
Perfluorobutanoic acid (PFBA)	M20-Ja13757	NCP	%	101	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	M20-Ja13757	NCP	%	95	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	M20-Ja13757	NCP	%	102	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	M20-Ja13757	NCP	%	103	50-150	Pass	
Perfluorooctanoic acid (PFOA)	M20-Ja13757	NCP	%	100	50-150	Pass	
Perfluorononanoic acid (PFNA)	M20-Ja13757	NCP	%	107	50-150	Pass	
Perfluorodecanoic acid (PFDA)	M20-Ja13757	NCP	%	101	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	M20-Ja13757	NCP	%	108	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	M20-Ja13757	NCP	%	112	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	M20-Ja13757	NCP	%	101	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M20-Ja13757	NCP	%	108	50-150	Pass	
Spike - % Recovery							
Perfluoroalkyl sulfonamido substa	nces			Result 1			
Perfluorooctane sulfonamide (FOSA)	M20-Ja13757	NCP	%	112	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M20-Ja13757	NCP	%	109	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M20-Ja13757	NCP	%	103	50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M20-Ja13757	NCP	%	97			50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M20-Ja13757	NCP	%	101			50-150	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M20-Ja13757	NCP	%	102			50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M20-Ja13757	NCP	%	105			50-150	Pass	
Spike - % Recovery									
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1					
Perfluorobutanesulfonic acid (PFBS)	M20-Ja13757	NCP	%	97			50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	M20-Ja13757	NCP	%	122			50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M20-Ja13757	NCP	%	100			50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M20-Ja13757	NCP	%	109			50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M20-Ja13757	NCP	%	95			50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M20-Ja13757	NCP	%	106			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	M20-Ja13757	NCP	%	104			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	M20-Ja13757	NCP	%	126			50-150	Pass	
Spike - % Recovery									
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)			Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M20-Ja13757	NCP	%	98			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M20-Ja13757	NCP	%	106			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M20-Ja13757	NCP	%	102			50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M20-Ja13757	NCP	%	96			50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
pH (1:5 Aqueous extract at 25°C as rec.)	M20-Ja17749	NCP	pH Units	8.6	8.6	pass	30%	Pass	
% Moisture	B20-Ja15383	NCP	%	58	59	1.0	30%	Pass	
Duplicate					1				
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	B20-Ja13645	NCP	ug/kg	< 5	5.4	8.0	30%	Pass	
Perfluoropentanoic acid (PFPeA)	B20-Ja13645	NCP	ug/kg	9.3	8.4	10	30%	Pass	
Perfluorohexanoic acid (PFHxA)	B20-Ja13645	NCP	ug/kg	29	35	17	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	B20-Ja13645	NCP	ug/kg	89	86	3.0	30%	Pass	
Perfluorooctanoic acid (PFOA)	M20-Ja15864	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	B20-Ja13645	NCP	ug/kg	330	360	7.0	30%	Pass	
Perfluorodecanoic acid (PFDA)	B20-Ja13645	NCP	ug/kg	260	280	6.0	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	B20-Ja13645	NCP	ug/kg	85	90	6.0	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	B20-Ja13645	NCP	ug/kg	76	76	<1	30%	Pass	

Duplicate												
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1	Result 2	RPD						
Perfluorotridecanoic acid (PFTrDA)	B20-Ja13645	ug/kg	22	21	4.0	30%	Pass					
Perfluorotetradecanoic acid (PFTeDA)	B20-Ja13645	NCP	ug/kg	13	13	2.0	30%	Pass				
Duplicate												
Perfluoroalkyl sulfonamido substances Result 1 Result 2 RPD												
Perfluorooctane sulfonamide (FOSA)	M20-Ja15864	NCP	ug/kg	< 5	< 5	<1	30%	Pass				
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M20-Ja15864	NCP	ug/kg	< 5	< 5	<1	30%	Pass				
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B20-Ja13645	NCP	ug/kg	< 5	< 5	<1	30%	Pass				
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	B20-Ja13645	NCP	ug/kg	150	170	10	30%	Pass				
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	B20-Ja13645	NCP	ug/kg	< 5	< 5	<1	30%	Pass				
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B20-Ja13645	NCP	ug/kg	120	110	11	30%	Pass				
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M20-Ja15864	NCP	ug/kg	< 10	< 10	<1	30%	Pass				
Duplicate												
Perfluoroalkyl sulfonic acids (PFSAs) Result 1 Result 2 RPD												
Perfluorobutanesulfonic acid (PFBS)	B20-Ja13645	NCP	ug/kg	14	15	9.0	30%	Pass				
Perfluorononanesulfonic acid (PFNS)	B20-Ja13645	NCP	ug/kg	52	57	9.0	30%	Pass				
Perfluoropropanesulfonic acid (PFPrS)	B20-Ja13645	NCP	ug/kg	< 5	< 5	<1	30%	Pass				
Perfluoropentanesulfonic acid (PFPeS)	B20-Ja13645	NCP	ug/kg	24	25	7.0	30%	Pass				
Perfluorohexanesulfonic acid (PFHxS)	B20-Ja13645	NCP	ug/kg	160	180	11	30%	Pass				
Perfluoroheptanesulfonic acid (PFHpS)	B20-Ja13645	NCP	ug/kg	100	110	9.0	30%	Pass				
Perfluorooctanesulfonic acid (PFOS)	M20-Ja15864	NCP	ug/kg	< 5	< 5	<1	30%	Pass				
Perfluorodecanesulfonic acid (PFDS)	B20-Ja13645	NCP	ug/kg	15	15	2.0	30%	Pass				
Duplicate					1							
n:2 Fluorotelomer sulfonic acids (r	:2 FTSAs)			Result 1	Result 2	RPD		+				
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B20-Ja13645	NCP	ug/kg	< 5	< 5	<1	30%	Pass				
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	B20-Ja13645	NCP	ug/kg	< 10	< 10	<1	30%	Pass				
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B20-Ja13645	NCP	ug/kg	340	290	15	30%	Pass				
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M20-Ja15864	NCP	ug/kg	< 5	< 5	<1	30%	Pass				

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N11 Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled nalogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time N15 to the analyte and no recovery correction has been made (Internal Standard Quantitation).

Authorised By

Ursula Long Julie Kay Sarah McCallion Scott Beddoes Analytical Services Manager Senior Analyst-Inorganic (VIC) Senior Analyst-PFAS (QLD) Senior Analyst-Inorganic (VIC)

A

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

NATA Accredited Accreditation Number 1261 Site Number 20794

🛟 eurofins

Environment Testing

ųi

dulul

NATA

WORLD RECOGNISED

Nation Partners 306 / 50 Holt Street, Surry Hills **NSW 2010**

Luke Clements

Report Project name Project ID **Received Date**

Attention:

697518-W **FRNSW - TARRA** NP19039 Jan 17, 2020

Client Sample ID			SW01	SW02	SW05	SW06
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			B20-Ja15827	B20-Ja15828	B20-Ja15829	B20-Ja15830
Date Sampled			Jan 17, 2020	Jan 17, 2020	Jan 17, 2020	Jan 17, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	0.21	< 0.05	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	0.80	< 0.01	0.07	0.05
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	0.34	< 0.01	0.04	< 0.01
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	0.11	< 0.01	0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	^{N09} 0.06	0.01	0.02	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	0.02	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	100	132	105	91
13C5-PFPeA (surr.)	1	%	46	68	61	51
13C5-PFHxA (surr.)	1	%	60	74	61	60
13C4-PFHpA (surr.)	1	%	73	86	75	77
13C8-PFOA (surr.)	1	%	77	90	74	75
13C5-PFNA (surr.)	1	%	106	115	102	100
13C6-PFDA (surr.)	1	%	112	124	115	119
13C2-PFUnDA (surr.)	1	%	103	102	100	99
13C2-PFDoDA (surr.)	1	%	91	72	78	72
13C2-PFTeDA (surr.)	1	%	130	62	66	63
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N- MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	90	94	92	86
D3-N-MeFOSA (surr.)	1	%	95	83	53	50
D5-N-EtFOSA (surr.)	1	%	92	76	50	47

Client Sample ID			SW01	SW02	SW05	SW06
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			B20-Ja15827	B20-Ja15828	B20-Ja15829	B20-Ja15830
Date Sampled			Jan 17, 2020	Jan 17, 2020	Jan 17, 2020	Jan 17, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonamido substances						
D7-N-MeFOSE (surr.)	1	%	81	88	66	69
D9-N-EtFOSE (surr.)	1	%	75	73	60	57
D5-N-EtFOSAA (surr.)	1	%	96	96	112	129
D3-N-MeFOSAA (surr.)	1	%	86	88	101	100
Perfluoroalkyl sulfonic acids (PFSAs)	÷					
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	0.09	< 0.01	< 0.01	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	0.03	< 0.01	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	0.06	< 0.01	< 0.01	< 0.01
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	^{N09} 0.20	< 0.01	^{N09} 0.01	< 0.01
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	^{N09} 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	^{N09} 0.44	< 0.01	^{N09} 0.04	^{N09} 0.03
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	118	138	122	122
18O2-PFHxS (surr.)	1	%	109	133	129	133
13C8-PFOS (surr.)	1	%	81	98	89	91
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)^{N11} $$	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)^{N1}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)^{N1}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	49	64	65	58
13C2-6:2 FTSA (surr.)	1	%	100	114	123	126
13C2-8:2 FTSA (surr.)	1	%	107	111	128	128
PFASs Summations	-	-				
Sum (PFHxS + PFOS)*	0.01	ug/L	0.64	< 0.01	0.05	0.03
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	0.5	0.01	0.06	0.03
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	0.7	0.01	0.07	0.03
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	2.25	< 0.05	0.19	0.08
Sum of PFASs (n=30)*	0.1	ug/L	2.37	< 0.1	0.19	< 0.1

Client Sample ID Sample Matrix Eurofins Sample No.			SW08 Water B20-Ja15831	SW09 Water B20-Ja15832
Date Sampled			Jan 17, 2020	Jan 17, 2020
Test/Reference	LOR	Unit		
Perfluoroalkyl carboxylic acids (PFCAs)				
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	0.03	0.02
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01

Client Sample ID			SW08	SW09
Sample Matrix			Water	Water
Eurofins Sample No.			B20-Ja15831	B20-Ja15832
Date Sampled			Jan 17, 2020	Jan 17, 2020
Test/Reference		linit	Jan 17, 2020	Jan 17, 2020
	LOR	Unit		
Perfluoroalkyl carboxylic acids (PFCAs)	0.04		0.04	0.04
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	92	116
13C5-PFPeA (surr.)	1	%	53	60
13C5-PFHxA (surr.)	1	%	53	68
13C4-PFHpA (surr.)	1	%	68	76
13C8-PFOA (surr.)	1		73	81
13C5-PFNA (surr.) 13C6-PFDA (surr.)	1	%	94	99
	1	%	115	118
13C2-PFUnDA (surr.) 13C2-PFDoDA (surr.)	1	%	95 64	95 66
	1	%	59	
13C2-PFTeDA (surr.) Perfluoroalkyl sulfonamido substances	I	70	59	65
	0.05		.0.05	.0.05
Perfluorooctane sulfonamide (FOSA) ^{N11} N-methylperfluoro-1-octane sulfonamide (N-	0.05	ug/L	< 0.05	< 0.05
MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	82	82
D3-N-MeFOSA (surr.)	1	%	37	30
D5-N-EtFOSA (surr.)	1	%	39	34
D7-N-MeFOSE (surr.)	1	%	52	47
D9-N-EtFOSE (surr.)	1	%	44	40
D5-N-EtFOSAA (surr.)	1	%	153	129
D3-N-MeFOSAA (surr.)	1	%	94	93
Perfluoroalkyl sulfonic acids (PFSAs)				
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	^{N09} 0.01	^{N09} 0.01
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	124	126
18O2-PFHxS (surr.)	1	%	130	133
13C8-PFOS (surr.)	1	%	85	90

Client Sample ID Sample Matrix			SW08 Water	SW09 Water
Eurofins Sample No.			B20-Ja15831	B20-Ja15832
Date Sampled			Jan 17, 2020	Jan 17, 2020
Test/Reference	LOR	Unit		
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)				
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N15}	0.01	ug/L	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	54	65
13C2-6:2 FTSA (surr.)	1	%	121	123
13C2-8:2 FTSA (surr.)	1	%	126	131
PFASs Summations				
Sum (PFHxS + PFOS)*	0.01	ug/L	0.01	0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	0.01	0.02
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	0.01	0.02
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	< 0.05
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	< 0.1

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Jan 20, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Jan 20, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Jan 20, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Jan 20, 2020	14 Days

- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)

🔅 eurofins					Austral	lia				New Zealand				
	50 005 085 521	web : www.eurofin		nment Te ail : EnviroSales@eur	esting	Melbour 6 Monter Dandenc Phone : - NATA # Site # 12	ey Road ng Sout +61 3 85 1261	h VIC 3 64 500	175 D	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7 Phone : 0800 856 450 IANZ # 1290
Company Name: Nation Partners Pty Ltd Address: 306 / 50 Holt Street, Surry Hills NSW 2010				R	rder N eport none: ax:	#:	697518 0405 821 580		Received: Due: Priority: Contact Name:	Jan 17, 2020 3:00 F Jan 24, 2020 5 Day Luke Clements	PM			
	oject Name: oject ID:	FRNSW - TA NP19039	ARRA									Eurofins Analytica	I Services Manager : U	Irsula Long
Sample Detail					pH (1:5 Aqueous extract at 25°C as rec.)	Total Organic Carbon	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)						
/lelk	oourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	X							
		- NATA Site # 1								_				
		y - NATA Site #				_		Х	Х	_				
		NATA Site # 237	'36							_				
Exte No	rnal Laboratory Sample ID	/ Sample Date	Sampling	Matrix	LAB ID					-				
		Cumpio Dato	Time	matrix	2.010									
	SW01	Jan 17, 2020		Water	B20-Ja15827				Х	_				
2	SW02	Jan 17, 2020		Water	B20-Ja15828				Х					
}	SW05	Jan 17, 2020		Water	B20-Ja15829				X					
	SW06	Jan 17, 2020		Water	B20-Ja15830				X					
5	SW08	Jan 17, 2020		Water	B20-Ja15831				X					
3	SW09	Jan 17, 2020		Water	B20-Ja15832				X					
7 3	SD02	Jan 17, 2020		Soil	B20-Ja15833	X	X	X	X					
	SD05	Jan 17, 2020	1	Soil	B20-Ja15834	X	X	Х	Х	1				

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	ug/L	< 0.05		0.05	Pass	
Perfluoropentanoic acid (PFPeA)	ug/L	< 0.01		0.01	Pass	
Perfluorohexanoic acid (PFHxA)	ug/L	< 0.01		0.01	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/L	< 0.01		0.01	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.01		0.01	Pass	
Perfluorononanoic acid (PFNA)	ug/L	< 0.01		0.01	Pass	
Perfluorodecanoic acid (PFDA)	ug/L	< 0.01		0.01	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/L	< 0.01		0.01	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/L	< 0.01		0.01	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/L	< 0.01		0.01	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/L	< 0.01		0.01	Pass	
Method Blank						
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)	ug/L	< 0.05		0.05	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/L	< 0.05		0.05	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/L	< 0.05		0.05	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N- MeFOSE)	ug/L	< 0.05		0.05	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/L	< 0.05		0.05	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/L	< 0.05		0.05	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/L	< 0.05		0.05	Pass	
Method Blank	<u>-</u>		<u> </u>			
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS)	ug/L	< 0.01		0.01	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/L	< 0.01		0.01	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/L	< 0.01		0.01	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/L	< 0.01		0.01	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/L	< 0.01		0.01	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/L	< 0.01		0.01	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/L	< 0.01		0.01	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/L	< 0.01		0.01	Pass	
Method Blank	ug/L	< 0.01		0.01	1 435	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ua/I	< 0.01		0.01	Page	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/L	< 0.01		0.01	Pass Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/L ug/L	< 0.03		0.03	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (8.2 FTSA)		< 0.01				
	ug/L	< 0.01		0.01	Pass	
LCS - % Recovery Perfluoroalkyl carboxylic acids (PFCAs)						
	0/	0.2		E0 1E0	Deee	
Perfluorobutanoic acid (PFBA)	%	83		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	97		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	80		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	87		50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	89		50-150	Pass	
Perfluorononanoic acid (PFNA)	%	83		50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	82		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	94		50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	84		50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	75		50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	83		50-150	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery					• • • • • • • • • • • • • • • • • • •			
Perfluoroalkyl sulfonamido substa	nces							
Perfluorooctane sulfonamide (FOSA)		%	79		50-150	Pass	
N-methylperfluoro-1-octane sulfonar	nide (N-MeFOSA)		%	75		50-150	Pass	
N-ethylperfluoro-1-octane sulfonami	N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)			64		50-150	Pass	
2-(N-methylperfluoro-1-octane sulfor	namido)-ethanol (N	-						
MeFOSE)			%	121		50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfona	/		%	87		50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoa			%	84		50-150	Pass	
N-methyl-perfluorooctanesulfonamid	oacetic acid (N-Me	FOSAA)	%	88		50-150	Pass	
LCS - % Recovery	• - \					1	1	
Perfluoroalkyl sulfonic acids (PFS)			0/			50.450	Dest	
Perfluorobutanesulfonic acid (PFBS)			%	68		50-150	Pass	
Perfluorononanesulfonic acid (PFNS	/		%	84		50-150	Pass	
Perfluoropropanesulfonic acid (PFPr			%	78		50-150	Pass	
Perfluoropentanesulfonic acid (PFPe	/		%	88		50-150	Pass	
Perfluoroheptanesulfonic acid (PFHp	/		%	71		50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)		%	66		50-150	Pass	
LCS - % Recovery	0.5704			· · · · ·		1	[
n:2 Fluorotelomer sulfonic acids (r			0/			50.450	Dese	
1H.1H.2H.2H-perfluorohexanesulfon			%	88		50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfoni			%	75		50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfon		0 A \	%	88		50-150	Pass	
1H.1H.2H.2H-perfluorododecanesul	ronic acid (10:2 FT	r í	%	84		50-150	Pass	O
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery	••• ·						1	
Perfluoroalkyl carboxylic acids (PF	,		0/	Result 1		50.450	Deee	
Perfluorobutanoic acid (PFBA)	B20-Ja13352	NCP	%	91		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	B20-Ja13352	NCP	%	111		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	B20-Ja13352	NCP	%	107		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	B20-Ja13352	NCP	%	103		50-150	Pass	
Perfluorooctanoic acid (PFOA)	B20-Ja13352	NCP	%	110		50-150	Pass	
Perfluorononanoic acid (PFNA)	B20-Ja13352	NCP	%	90		50-150	Pass	
Perfluorodecanoic acid (PFDA)	B20-Ja13352	NCP	%	89		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	B20-Ja13352	NCP	%	89		50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	B20-Ja13352	NCP	%	64		50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	B20-Ja13352	NCP	%	68		50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	B20-Ja13352	NCP	%	64		50-150	Pass	
Spike - % Recovery						1		
Perfluoroalkyl sulfonamido substa	nces			Result 1				
Perfluorooctane sulfonamide (FOSA)	B20-Ja13352	NCP	%	94		50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B20-Ja13352	NCP	%	87		50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B20-Ja13352	NCP	%	70		50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	B20-Ja13352	NCP	%	115		50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	B20-Ja13352	NCP	%	85		50-150	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B20-Ja13352	NCP	%	60		50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B20-Ja13352	NCP	%	123			50-150	Pass	
Spike - % Recovery									
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1					
Perfluorobutanesulfonic acid (PFBS)	B20-Ja13352	NCP	%	109			50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	B20-Ja13352	NCP	%	62			50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	B20-Ja13352	NCP	%	84			50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B20-Ja13352	NCP	%	111			50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B20-Ja13352	NCP	%	82			50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B20-Ja13352	NCP	%	88			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	B20-Ja13352	NCP	%	99			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	B20-Ja13352	NCP	%	81			50-150	Pass	
Spike - % Recovery				I.	1		1	r	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B20-Ja13352	NCP	%	89			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	B20-Ja13352	NCP	%	85			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B20-Ja13352	NCP	%	72			50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B20-Ja13352	NCP	%	87			50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		1 1							
Perfluoroalkyl carboxylic acids (Pl	FCAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	S20-Ja14029	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Duplicate									
Perfluoroalkyl sulfonamido substances					Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	S20-Ja14029	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	S20-Ja14029	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	S20-Ja14029	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	S20-Ja14029	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	S20-Ja14029	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	S20-Ja14029	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	S20-Ja14029	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate				1	1				
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)			Result 1	Result 2	RPD		+	
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	S20-Ja14029	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	S20-Ja14029	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

 N09
 Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.

 Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time N15 to the analyte and no recovery correction has been made (Internal Standard Quantitation).

Authorised By

Ursula Long Sarah McCallion Analytical Services Manager Senior Analyst-PFAS (QLD)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profils, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

🛟 eurofins

Environment Testing

Nation Partners 306 / 50 Holt Street, Surry Hills NSW 2010

Attention:

Luke Clements

Report Project name Project ID Received Date 698668-S NP19039 FRNSW-TARRO Jan 24, 2020

Client Sample ID			S28(0.0-0.2)	S28(0.2-0.4)	S29(0.0-0.2)	S29(0.2-0.4)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-Ja25610	M20-Ja25611	M20-Ja25615	M20-Ja25616
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
Test/Reference	LOR	Unit	0000 22, 2020	0411 22, 2020	0411 22, 2020	0411 22, 2020
Total Recoverable Hydrocarbons - 1999 NEPM Fr	-	Onit				
TRH C6-C9	20	mg/kg	< 20	_	< 20	_
TRH C10-C14	20	mg/kg	< 20	-	< 20	-
TRH C15-C28	50	mg/kg	< 50	-	< 50	-
TRH C29-C36	50	mg/kg	87	-	< 50	-
TRH C10-C36 (Total)	50	mg/kg	87	-	< 50	-
втех						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	54	-	54	-
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	< 20	-
TRH >C10-C16	50	mg/kg	< 50	-	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	< 100	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	-

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID				S22(0.0.0.4)	600/0 0 0 0)	S20(0.0.0.4)
Client Sample ID			S28(0.0-0.2)	S28(0.2-0.4)	S29(0.0-0.2)	S29(0.2-0.4)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-Ja25610	M20-Ja25611	M20-Ja25615	M20-Ja25616
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		-				
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	-	0.6	-
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	-	0.5	-
Total PAH*	0.5	mg/kg	< 0.5	-	1.1	-
2-Fluorobiphenyl (surr.)	1	%	91	-	90	-
p-Terphenyl-d14 (surr.)	1	%	96	-	99	-
Heavy Metals						
Arsenic	2	mg/kg	4.9	-	8.3	-
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	-
Chromium	5	mg/kg	14	-	14	-
Copper	5	mg/kg	16	-	24	-
Lead	5	mg/kg	75	-	77	-
Mercury	0.1	mg/kg	< 0.1	-	0.1	-
Nickel	5	mg/kg	7.6	-	17	-
Zinc	5	mg/kg	81	-	130	-
% Moisture	1	%	14	19.51	18	14
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	6.2	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	11	27	9.9	5.7
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	20	^{N09} 20	^{N09} 14
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	27	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	^{N09} 12	^{N09} 14	^{N09} 9.2
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	68	72	60	72
13C5-PFPeA (surr.)	1	%	72	70	62	75
13C5-PFHxA (surr.)	1	%	74	75	60	71
13C4-PFHpA (surr.)	1	%	70	65	58	66
13C8-PFOA (surr.)	1	%	69	72	59	70
13C5-PFNA (surr.)	1	%	89	92	71	91
13C6-PFDA (surr.)	1	%	116	98	87	99
13C2-PFUnDA (surr.)	1	%	108	92	93	125
13C2-PFDoDA (surr.)	1	%	104	94	87	120
13C2-PFTeDA (surr.)	1	%	97	96	86	113

Client Sample ID Sample Matrix			S28(0.0-0.2) Soil	S28(0.2-0.4) Soil	S29(0.0-0.2) Soil	S29(0.2-0.4) Soil
Eurofins Sample No.			M20-Ja25610	M20-Ja25611	M20-Ja25615	M20-Ja25616
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
Test/Reference	LOR	Unit	, ,	,,	, ,	,,
Perfluoroalkyl sulfonamido substances	LOR	Onit				
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N-		ug/kg	~ ~ ~	< 5	< 5	
MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
$\begin{array}{l} 2\text{-}(\text{N-ethylperfluoro-1-octane sulfonamido})\text{-}ethanol (\text{N-EtFOSE})^{\text{N1}} \end{array}$	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)^{N1}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	67	61	59	71
D3-N-MeFOSA (surr.)	1	%	88	86	81	98
D5-N-EtFOSA (surr.)	1	%	103	91	89	111
D7-N-MeFOSE (surr.)	1	%	91	84	78	98
D9-N-EtFOSE (surr.)	1	%	74	71	60	90
D5-N-EtFOSAA (surr.)	1	%	87	83	74	96
D3-N-MeFOSAA (surr.)	1	%	90	91	74	94
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	11	9.1
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	^{N09} 34	^{N09} 8.9
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	6.6	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	^{N09} < 5	^{N09} 34	N0962	^{N09} 37
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	N0912	N096.8
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	^{N09} 62	^{N09} 180	^{N09} 1400	008 ^{00N}
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	18	< 5
13C3-PFBS (surr.)	1	%	91	92	77	98
1802-PFHxS (surr.)	1	%	93	78	72	95
13C8-PFOS (surr.)	I	%	93	85	108	109
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	47	77	37	37
13C2-6:2 FTSA (surr.)	1	%	56	69	41	46
13C2-8:2 FTSA (surr.)	1	%	83	92	69	86
PFASs Summations	_					
Sum (PFHxS + PFOS)*	5	ug/kg	62	214	1462	837
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	62	192	1414	809.2
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	62	226	1476	846.2
Sum of WA DWER PFAS (n=10)*	10	ug/kg	73	306.2	1516.9	875
Sum of PFASs (n=30)*	50	ug/kg	73	306.2	1587.5	890.7

Client Sample ID Sample Matrix			S30(0.0-0.2) Soil	S30(0.2-0.4) Soil	S31(0.0-0.2) Soil	S31(0.2-0.4) Soil
Eurofins Sample No.			M20-Ja25620	M20-Ja25621	M20-Ja25624	M20-Ja25625
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
Test/Reference	LOR	Unit				
% Moisture	1	%	17	25	16	23
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	8.0	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	^{N09} 10.0	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	6.7	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	^{N09} 25	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	70	72	65	70
13C5-PFPeA (surr.)	1	%	75	72	69	70
13C5-PFHxA (surr.)	1	%	76	75	68	72
13C4-PFHpA (surr.)	1	%	67	70	59	64
13C8-PFOA (surr.)	1	%	69	68	67	70
13C5-PFNA (surr.)	1	%	87	85	79	90
13C6-PFDA (surr.)	1	%	108	97	109	111
13C2-PFUnDA (surr.)	1	%	105	104	100	111
13C2-PFDoDA (surr.)	1	%	106	104	98	110
13C2-PFTeDA (surr.)	1	%	107	98	99	108
Perfluoroalkyl sulfonamido substances		T				
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol		ug/ng				
(N-MeFOŠE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-	10	ug/kg				
MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	63	67	64	74
D3-N-MeFOSA (surr.)	1	%	88	77	88	100
D5-N-EtFOSA (surr.)	1	%	99	97	99	114
D7-N-MeFOSE (surr.)	1	%	84	89	82	102
D9-N-EtFOSE (surr.)	1	%	72	81	73	90
D5-N-EtFOSAA (surr.)	1	%	85	76	80	79
D3-N-MeFOSAA (surr.)	1	%	84	77	79	72
Perfluoroalkyl sulfonic acids (PFSAs)		1				
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	^{N09} 9.5	^{N09} 42	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	^{N09} 13	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	^{N09} 340	^{N09} 530	^{N09} 31	< 5

Client Sample ID			S30(0.0-0.2)	S30(0.2-0.4)	S31(0.0-0.2)	S31(0.2-0.4)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-Ja25620	M20-Ja25621	M20-Ja25624	M20-Ja25625
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	96	89	88	97
18O2-PFHxS (surr.)	1	%	95	83	86	100
13C8-PFOS (surr.)	1	%	79	114	86	102
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 $FTSA)^{N11}$	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 $FTSA)^{N11}$	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 $FTSA)^{N11}$	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	51	56	37	35
13C2-6:2 FTSA (surr.)	1	%	63	56	48	35
13C2-8:2 FTSA (surr.)	1	%	79	91	69	73
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	349.5	572	31	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	340	555	31	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	349.5	597	31	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	349.5	621.7	31	< 10
Sum of PFASs (n=30)*	50	ug/kg	349.5	634.7	< 50	< 50

Client Sample ID			S32(0.0-0.2)	S32(0.2-0.4)	S33(0.2-0.4)	S33(0.0-0.2)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-Ja25628	M20-Ja25629	M20-Ja25633	M20-Ja25634
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	-	-	< 20
TRH C10-C14	20	mg/kg	< 20	-	-	< 20
TRH C15-C28	50	mg/kg	57	-	-	< 50
TRH C29-C36	50	mg/kg	62	-	-	< 50
TRH C10-C36 (Total)	50	mg/kg	119	-	-	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	-	-	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	-	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	52	-	-	119
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	-	< 20
TRH >C10-C16	50	mg/kg	< 50	-	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	-	< 50
TRH >C16-C34	100	mg/kg	< 100	-	-	< 100

Client Sample ID Sample Matrix			S32(0.0-0.2) Soil	S32(0.2-0.4) Soil	S33(0.2-0.4) Soil	S33(0.0-0.2) Soil
Eurofins Sample No.			M20-Ja25628	M20-Ja25629	M20-Ja25633	M20-Ja25634
•						
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
Test/Reference		Unit				
Total Recoverable Hydrocarbons - 2013 NEPM						
TRH >C34-C40	100	mg/kg	< 100	-	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	-	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	1.2
Acenaphthene	0.5	mg/kg	< 0.5	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Fluoranthene	0.5	mg/kg	1.1	-	-	< 0.5
Fluorene	0.5	mg/kg	< 0.5	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Naphthalene Phenanthrene	0.5	mg/kg	< 0.5 0.6		-	< 0.5
	0.5	mg/kg	1.1		-	< 0.5
Pyrene Total PAH*	0.5	mg/kg mg/kg	2.8		-	< 0.5
2-Fluorobiphenyl (surr.)	1	111g/kg %	93		-	90
p-Terphenyl-d14 (surr.)	1	%	101			80
Heavy Metals		70	101	_		00
Arsenic	2	malka	8.6			4.6
Cadmium	0.4	mg/kg mg/kg	0.6		-	< 0.4
Chromium	5	mg/kg	13		-	21
Copper	5	mg/kg	63	-		< 5
Lead	5	mg/kg	220	-	_	19
Mercury	0.1	mg/kg	0.2		-	< 0.1
Nickel	5	mg/kg	10		-	5.2
Zinc	5	mg/kg	510	-	_	37
		iiig/kg	510			
% Moisture	1	%	15	17	7.2	20
Perfluoroalkyl carboxylic acids (PFCAs)	1	70	15	17	1.2	20
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5 ^{N09} 6.4
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	× 5	^{N09} 25
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	^{N09} 9.0
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	^{× 3}	^{N09} 69
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PT D0DA)	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	<u>ug/kg</u> %	64	61	66	91

Client Sample ID Sample Matrix			S32(0.0-0.2) Soil	S32(0.2-0.4) Soil	S33(0.2-0.4) Soil	S33(0.0-0.2) Soil
•						
Eurofins Sample No.			M20-Ja25628	M20-Ja25629	M20-Ja25633	M20-Ja25634
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)		1				
13C5-PFPeA (surr.)	1	%	67	65	69	95
13C5-PFHxA (surr.)	1	%	67	65	65	88
13C4-PFHpA (surr.)	1	%	63	59	64	95
13C8-PFOA (surr.)	1	%	70	68	67	81
13C5-PFNA (surr.)	1	%	82	78	85	93
13C6-PFDA (surr.)	1	%	90	87	68	51
13C2-PFUnDA (surr.)	1	%	101	87	111	93
13C2-PFDoDA (surr.)	1	%	102	97	89	91
13C2-PFTeDA (surr.)	1	%	82	87	91	89
Perfluoroalkyl sulfonamido substances		1				
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol	Ť					
(N-MeFOŚĖ) ^{№11}	5	ug/kg	< 5	< 5	< 5	< 5
$\begin{array}{l} \mbox{2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)^{N1} \end{array}$	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N- MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	64	63	62	70
D3-N-MeFOSA (surr.)	1	%	88	84	87	94
D5-N-EtFOSA (surr.)	1	%	105	98	95	103
D7-N-MeFOSE (surr.)	1	%	87	82	82	73
D9-N-EtFOSE (surr.)	1	%	71	71	60	112
D5-N-EtFOSAA (surr.)	1	%	84	85	81	83
D3-N-MeFOSAA (surr.)	1	%	80	80	75	93
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	15	10.0
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	^{N09} 14	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	5.0	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	^{N09} 8.9	9.9
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	^{N09} 21	^{N09} 24	^{N09} 110	^{N09} 150
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	^{N09} 8.4	^{N09} 8.1	^{N09} 21	^{N09} 100
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	^{N09} 980	^{N09} 920	^{N09} 2400	^{N09} 2500
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	89	83	87	84
18O2-PFHxS (surr.)	1	%	82	80	68	82
13C8-PFOS (surr.)	1	%	100	102	100	95
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		1				
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	37	35	49	75
13C2-6:2 FTSA (surr.)	1	%	37	35	55	84
13C2-8:2 FTSA (surr.)	1	%	71	71	71	128

Client Sample ID Sample Matrix			S32(0.0-0.2) Soil	S32(0.2-0.4) Soil	S33(0.2-0.4) Soil	S33(0.0-0.2) Soil
Eurofins Sample No.			M20-Ja25628	M20-Ja25629	M20-Ja25633	M20-Ja25634
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
Test/Reference	LOR	Unit				
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	1001	944	2510	2650
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	980	920	2415	2569
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	1001	944	2525	2719
Sum of WA DWER PFAS (n=10)*	10	ug/kg	1001	944	2554	2769.4
Sum of PFASs (n=30)*	50	ug/kg	1009.4	952.1	2602.9	2879.3

Client Sample ID			QC1
Sample Matrix			Soil
Eurofins Sample No.			M20-Ja25637
Date Sampled			Jan 22, 2020
Test/Reference	LOR	Unit	,
Total Recoverable Hydrocarbons - 1999 NEPM Fra	-	Offic	
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	66
TRH C10-C36 (Total)	50	mg/kg	66
BTEX			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	51
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5

Client Sample ID			QC1
Sample Matrix			Soil
Eurofins Sample No.			M20-Ja25637
Date Sampled			Jan 22, 2020
•		1.1	Jan 22, 2020
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Fluoranthene	0.5	mg/kg	0.8
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	0.8
Total PAH*	0.5	mg/kg	1.6
2-Fluorobiphenyl (surr.)	1	%	107
p-Terphenyl-d14 (surr.)	1	%	111
Heavy Metals	2		
Arsenic	2	mg/kg	9.4
Cadmium	0.4	mg/kg	0.9
Chromium	5	mg/kg	16
Copper	5	mg/kg	68
Lead	5	mg/kg	270
Mercury	0.1	mg/kg	0.3
Nickel	5	mg/kg	11
Zinc	5	mg/kg	570
	1	1	
% Moisture	1	%	20
Perfluoroalkyl carboxylic acids (PFCAs)			
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5
13C4-PFBA (surr.)	1	%	51
13C5-PFPeA (surr.)	1	%	55
13C5-PFHxA (surr.)	1	%	52
13C4-PFHpA (surr.)	1	%	48
13C8-PFOA (surr.)	1	%	51
13C5-PFNA (surr.)	1	%	68
13C6-PFDA (surr.)	1	%	82
13C2-PFUnDA (surr.)	1	%	86
13C2-PFDoDA (surr.)	1	%	83
13C2-PFTeDA (surr.)	1	%	71
Perfluoroalkyl sulfonamido substances	1		
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol	F		. 5
(N-MeFOSE) ^{N11}	5	ug/kg	< 5

Client Sample ID			QC1
Sample Matrix			Soil
Eurofins Sample No.			M20-Ja25637
Date Sampled			Jan 22, 2020
		L last	Jan 22, 2020
Test/Reference	LOR	Unit	
Perfluoroalkyl sulfonamido substances			
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	5	ug/kg	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10
13C8-FOSA (surr.)	1	%	58
D3-N-MeFOSA (surr.)	1	%	79
D5-N-EtFOSA (surr.)	1	%	87
D7-N-MeFOSE (surr.)	1	%	73
D9-N-EtFOSE (surr.)	1	%	62
D5-N-EtFOSAA (surr.)	1	%	70
D3-N-MeFOSAA (surr.)	1	%	67
Perfluoroalkyl sulfonic acids (PFSAs)			
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	^{N09} 11
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	^{N09} 20
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	^{N09} 7.4
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	^{N09} 1200
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5
13C3-PFBS (surr.)	1	%	73
1802-PFHxS (surr.)	1	%	71
13C8-PFOS (surr.)	1	%	74
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N15}	5	ug/kg	< 5
13C2-4:2 FTSA (surr.)	1	%	26
13C2-6:2 FTSA (surr.)	1	%	29
13C2-8:2 FTSA (surr.)	1	%	52
PFASs Summations			
Sum (PFHxS + PFOS)*	5	ug/kg	1220
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	1200
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	1220
Sum of WA DWER PFAS (n=10)*	10	ug/kg	1220
Sum of PFASs (n=30)*	50	ug/kg	1238.4

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B7			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Feb 03, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Feb 03, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Feb 03, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Feb 03, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Feb 03, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Melbourne	Feb 03, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Melbourne	Jan 28, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Jan 29, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Jan 29, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Jan 29, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Jan 29, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

•		fine				Austral	lia							New Zealand	
BN - 50 00	EURO 15 085 521			nment Te	esting	Melbour Monter Dandenc Phone : - IATA # Site # 12	ey Road ng Sou +61 3 85 1261	th VIC 3 564 500	3175 00	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 76 Phone : 0800 856 450 IANZ # 1290
Compa Addres	any Name: ss:	Nation Partn 306 / 50 Holt Surry Hills NSW 2010					R	rder I eport hone: ax:	#:		698668 0405 821 580		Received: Due: Priority: Contact Name:	Jan 24, 2020 3:19 F Feb 3, 2020 5 Day Luke Clements	PM
Project Project	t Name: t ID:	NP19039 FRNSW-TAF	RRO										Eurofins Analytica	I Services Manager : U	Irsula Long
		Sa	mple Detail			HOLD	Moisture Set	Moisture Set	Eurofins mgt Suite B7	Per- and Polyfluoroalkyl Substances (PFASs)					
Melbouri	ne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х		1				
		- NATA Site # 1													
		/ - NATA Site #					Х	Х		Х					
		IATA Site # 237													
External	Laboratory														
No S	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
	8(0.0-0.2)	Jan 22, 2020		Soil	M20-Ja25610			Х	Х	X	_				
- 1	8(0.2-0.4)	Jan 22, 2020		Soil	M20-Ja25611		X			X	4				
	8(0.4-0.6)	Jan 22, 2020		Soil	M20-Ja25612	Х					4				
	8(0.6-0.8)	Jan 22, 2020		Soil	M20-Ja25613	X					4				
	8(0.8-1.0)	Jan 22, 2020		Soil	M20-Ja25614	X					4				
	9(0.0-0.2)	Jan 22, 2020		Soil	M20-Ja25615		X		X	X	4				
	9(0.2-0.4)	Jan 22, 2020		Soil	M20-Ja25616			X		X	4				
	9(0.4-0.6)	Jan 22, 2020		Soil	M20-Ja25617	X					4				
1	9(0.6-0.8)	Jan 22, 2020		Soil	M20-Ja25618	X					4				
10 S29	9(0.8-1.0)	Jan 22, 2020		Soil	M20-Ja25619	Х									

* ourof	eurofins				lia								
ABN - 50 005 085 521	Environment Testi 5 085 521 web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com any Name: Nation Partners Pty Ltd as: 306 / 50 Holt Street, Surry Hills NSW 2010 t Name: NP19039		Melbour 6 Monte Dandene Phone : NATA # Site # 12	rey Road ong Sou +61 3 85 1261	th VIC 3 564 500	3175 00	16 Mars Lane Co Phone :	Building F	Brisbane 1/21 Smallwood Place Murarie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 76 Phone : 0800 856 450 IANZ # 1290	
Company Name: Address:	ess: 306 / 50 Holt Street, Surry Hills NSW 2010 ct Name: NP19039				R	rder I eport hone: ax:	#:		98668 405 821 580		Received: Due: Priority: Contact Name:	Jan 24, 2020 3:19 F Feb 3, 2020 5 Day Luke Clements	M
Project Name: Project ID:		RO									Eurofins Analytica	I Services Manager : U	rsula Long
Sample Detail elbourne Laboratory - NATA Site # 1254 & 14271					Moisture Set	Moisture Set	Eurofins mgt Suite B7	Per- and Polyfluoroalkyl Substances (PFASs)					
				X	X	X	X						
Sydney Laboratory - I													
Brisbane Laboratory					X	X		X					
Perth Laboratory - NA													
	Jan 22, 2020	Soil	M20-Ja25620			X		X					
	Jan 22, 2020 Jan 22, 2020	Soil Soil	M20-Ja2562			X		X					
	Jan 22, 2020 Jan 22, 2020	Soil	M20-Ja25622										
	Jaiizz. ZUZU	3011	M20-Ja25623	, ^		- V		x					
		Soil	M20 102562										
15 S31(0.0-0.2) J	Jan 22, 2020	Soil	M20-Ja25624			X							
15 S31(0.0-0.2) J 16 S31(0.2-0.4) J	Jan 22, 2020 Jan 22, 2020	Soil	M20-Ja25628	5		X		X					
15 S31(0.0-0.2) J 16 S31(0.2-0.4) J 17 S31(0.4-0.6) J	Jan 22, 2020 Jan 22, 2020 Jan 22, 2020	Soil Soil	M20-Ja25628 M20-Ja25626	5 3 X									
15 S31(0.0-0.2) J 16 S31(0.2-0.4) J 17 S31(0.4-0.6) J 18 S31(0.6-0.8) J	Jan 22, 2020 Jan 22, 2020 Jan 22, 2020 Jan 22, 2020	Soil Soil Soil	M20-Ja25625 M20-Ja25626 M20-Ja25627	5 X 7 X	x		x	X					
15 S31(0.0-0.2) J 16 S31(0.2-0.4) J 17 S31(0.4-0.6) J 18 S31(0.6-0.8) J 19 S32(0.0-0.2) J	Jan 22, 2020 Jan 22, 2020 Jan 22, 2020 Jan 22, 2020 Jan 22, 2020	Soil Soil Soil Soil	M20-Ja25625 M20-Ja25625 M20-Ja25627 M20-Ja25625 M20-Ja25625	5 X 7 X 3 3	x	X	X	X X X					
15 S31(0.0-0.2) J 16 S31(0.2-0.4) J 17 S31(0.4-0.6) J 18 S31(0.6-0.8) J 19 S32(0.0-0.2) J 20 S32(0.2-0.4) J	Jan 22, 2020 Jan 22, 2020 Jan 22, 2020 Jan 22, 2020 Jan 22, 2020 Jan 22, 2020	Soil Soil Soil Soil Soil	M20-Ja25625 M20-Ja25626 M20-Ja25627 M20-Ja25627 M20-Ja25625 M20-Ja25625	5 X 7 X 3 0	x		X	X					
15 S31(0.0-0.2) J 16 S31(0.2-0.4) J 17 S31(0.4-0.6) J 18 S31(0.6-0.8) J 19 S32(0.0-0.2) J 20 S32(0.2-0.4) J 21 S32(0.4-0.6) J	Jan 22, 2020 Jan 22, 2020 Jan 22, 2020 Jan 22, 2020 Jan 22, 2020	Soil Soil Soil Soil	M20-Ja25625 M20-Ja25625 M20-Ja25627 M20-Ja25625 M20-Ja25625	5 X 7 X 3	X	X	X	X X X					

	fine			Austra	lia							New Zealand				
BN - 50 005 085 521		au e.mail : EnviroSales@		Melbour 6 Monter Dandenc Phone : NATA # Site # 12	rey Road ong Sout +61 3 85 1261	th VIC 3 564 500	3175 10	16 Mars Lane C Phone	, Building F	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290			
Company Name: Address:	Nation Partners P 306 / 50 Holt Stre Surry Hills NSW 2010				Re Pl	erder N eport hone: ax:	#:		598668 0405 821 580		Received: Due: Priority: Contact Name:	Jan 24, 2020 3:19 PM Feb 3, 2020 5 Day Luke Clements				
Project Name: Project ID:	NP19039 FRNSW-TARRO										Eurofins Analytical Services Manager : Ursula Long					
	Sample	Detail		HOLD	Moisture Set	Moisture Set	Eurofins mgt Suite B7	Per- and Polyfluoroalkyl Substances (PFASs)								
Melbourne Laborato	ry - NATA Site # 12	54 & 14271		X	Х	Х	Х									
Sydney Laboratory -						<u> </u>			-							
Brisbane Laboratory		94			X	Х		X	-							
Perth Laboratory - N					<u> </u>	<u> </u>			-							
	Jan 22, 2020	Soil	M20-Ja2563		X			X	-							
	Jan 22, 2020	Soil	M20-Ja2563		X	—	X	X	-							
	Jan 22, 2020	Soil	M20-Ja2563		+	+	-		-							
	Jan 22, 2020	Soil	M20-Ja2563		x	+	x	x	-							
	Jan 22, 2020 Jan 22, 2020	Soil Soil	M20-Ja2563 M20-Ja2563		+ ~	+	^		-							
	Jan 22, 2020 Jan 22, 2020	Soil	M20-Ja2563 M20-Ja2563		+	+	-		-							
					+	+	-		-							
31 TRIP SPIKE Jan 22, 2020 Soil M20-Ja2564					1	1	1	1	1							

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractio	ns					
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank			•			
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractio	ns					
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank		1100		1.00	1 400	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank	iiig/kg	< 0.5		0.5	1 435	
Heavy Metals				1		
Arsenic	ma/ka	< 2		2	Pass	
Cadmium	mg/kg mg/kg	< 0.4		0.4	Pass	
	mg/kg	< 0.4		5	Pass	
Coppor	mg/kg	< 5 < 5		5	Pass	
Copper Lead	mg/kg	< 5 < 5		5	Pass	
				0.1		
Mercury	mg/kg	< 0.1			Pass	
Nickel	mg/kg	< 5	<u> </u>	5	Pass	
Zinc Mathed Blank	mg/kg	< 5		5	Pass	
Method Blank				1		
Perfluoroalkyl carboxylic acids (PFCAs)		-	<u> </u>	-		
Perfluorobutanoic acid (PFBA)	ug/kg	< 5		5	Pass	

Perfluczopentanic acid (PFPA) ughg c.5 6 Pass Perfluczobarosci acid (PFA) ughg c.5 6 Pass Perfluczobarosci acid (PFA) ughg c.5 6 Pass Perfluczobarosci acid (PFA) ughg c.5 6 Pass Perfluczobarosci acid (PFDA) ughg c.5 6 Pass Perfluczobarosci acid (PFDA) ughg c.5 6 Pass Perfluczobarosci acid (PFDA) ughg c.5 5 Pass Perfluczobarosci acid	Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Perfluctorbusence and (PFHA) ugkg c.5 Image: Section of the section	Perfluoropentanoic acid (PEPeA)	ua/ka	< 5				OUUC
Perfluoron-betanoic add (PFDA) ug/kg < 5		00			-		
Perfusconcianal caid (PFA) ug/g c 5 c 5 Pass Perfusconce and (PFUA) ug/g c 5 5 Pass Perfusconce and caid (PFUA) ug/g c 5 5 Pass Perfusconce and caid (PFUA) ug/g c 5 5 Pass Perfusconce and caid (PFUA) ug/g c 5 5 Pass Perfusconce and cain and (PGSA) ug/g c 5 5 Pass Nmethylperfuscon-toctane sulforamido-perfanol (N- MeTOSE) ug/g c 5 5 Pass 2-(N-methylperfuscon-toctane sulforamido-perfanol (N- MeTOSE) ug/g c 5 5 Pass 2-(N-methylperfuscon-toctane sulforamido-perfanol (N- MeTOSE) ug/g c 5 5 Pass 2-(N-methylperfuscon-toctane sulforamido-perfanol (N- MeTOSE) ug/g c 5 5 Pass					-		
Perfusconcense add (PFDA) ug/sg < 5 5 Pass Perfuscondecancic add (PFDA) ug/sg < 5					-		
Perfunctoriseaci probability ug/kg <.6 S Pass Perfunctoridecancic acid (PFDoDA) ug/kg <.5		00					
Perfurcondecancic acid (PFIDA) ug/kg <.5 S Pass Perfluorondecancic acid (PFIDA) ug/kg <.5		00					
Perturcatodecanoic acid (PFDDA) ug/kg <.5 5 Pass Perfluorotindecanoic acid (PFTDA) ug/kg <.5		00					
Perfluorotidacanoic acid (PFTDA) ug/kg <.5 S Pass Perfluorotitradecanoic acid (PFTDA) ug/kg <.5		00					
Perfluorotetradecanoic acid (PFTeDA) ugkg < 5 Pass Method Blank		00					
Method Blank U I I I Perfluoroclane sulfonamide (POSA) ugkg < 5							
Perfluoroalky suffonamido substances Image of the suffonamido (N-MeFOSA) ug/kg <.5 Pass Nethylperfluoro-1-octane suffonamido (N-MeFOSA) ug/kg <.5	· · ·	ug/kg		<u> </u>		1 433	
Perturnociane sulfonamide (POSA) ug/kg < 6 6 Pass N-methylperfluoro-1-octane sulfonamide (N-MEFOSA) ug/kg < 5							
N-methylperfluoro-1-octane sulfonamido (N-MEPOSA) ug/kg < 5 5 Pass N-methylperfluoro-1-octane sulfonamido)-ethanol (N-EFOSA) ug/kg < 5		ua/ka	- 5		5	Pass	
N=thylperfluoro-1-octane sulfonamido (NEtFOSA) ug/kg < 5 5 Pass 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-EFOSA) ug/kg < 5		00					
2.(N-entrylperfluoro-1-octane sulfonamido)-ethanol (N- MeFOSE) ug/kg <.5 Pass 2.(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EIFOSA) ug/kg <.5							
MeFOSE) ug/kg < 5 Pass 2-(N-ethylperfluoroctanesulfonamidoacetic acid (N-EIFOSAA) ug/kg < 10		ug/kg	< 5		5	F 455	
N-ethyl-perfluorocctanesulfonamidoacetic acid (N-EIFOSAA) ug/kg < 10 Pass N-methyl-perfluorocctanesulfonamidoacetic acid (N-MeFOSAA) ug/kg < 10		ug/kg	< 5		5	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ug/kg < 10 Pass N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ug/kg < 10	2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	00			5	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ug/kg < 10 Pass Method Blank		00	< 10		10	Pass	
Perfluoroalkyl sulfonic acids (PFSAs) ug/kg <.5 Perfluorobutanesulfonic acid (PFNS) ug/kg <.5	N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)		< 10		10	Pass	
Perfluorobutanesulfonic acid (PFBS) ug/kg < 5 Perfluoropropanesulfonic acid (PFPS) ug/kg < 5	Method Blank						
Perfluorobutanesulfonic acid (PFBS) ug/kg < 5 Perfluoropropanesulfonic acid (PFPS) ug/kg < 5	Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluoropanesulfonic acid (PFPrS) ug/kg < 5 5 Pass Perfluoropenanesulfonic acid (PFPRS) ug/kg < 5		ug/kg	< 5		5	Pass	
Perfluoropentanesulfonic acid (PFPeS) ug/kg <.5 S Pass Perfluorohexanesulfonic acid (PFHxS) ug/kg <.5	Perfluorononanesulfonic acid (PFNS)	ug/kg	< 5		5	Pass	
Perfluoropentanesulfonic acid (PFPeS) ug/kg <.5 5 Pass Perfluorohexanesulfonic acid (PFHxS) ug/kg <.5	Perfluoropropanesulfonic acid (PFPrS)	ug/kg	< 5		5	Pass	
Perfluorohexanesulfonic acid (PFHxS) ug/kg <.5 5 Pass Perfluoroheztanesulfonic acid (PFHpS) ug/kg <.5	Perfluoropentanesulfonic acid (PFPeS)	ug/kg			5	Pass	
Perfluorooctanesulfonic acid (PFOS) ug/kg < 5 5 Pass Perfluorodecanesulfonic acid (PFDS) ug/kg < 5	Perfluorohexanesulfonic acid (PFHxS)	ug/kg			5	Pass	
Perfluorodecanesulfonic acid (PFDS) ug/kg < 5 Pass Method Blank	Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	< 5		5	Pass	
Perfluorodecanesulfonic acid (PFDS) ug/kg < 5 Pass Method Blank	Perfluorooctanesulfonic acid (PFOS)	ug/kg			5	Pass	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) ug/kg <	Perfluorodecanesulfonic acid (PFDS)	ug/kg	< 5		5	Pass	
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ug/kg < 5	Method Blank						
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ug/kg < 10	n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ug/kg < 5 Pass 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ug/kg < 5	1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/kg	< 5		5	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ug/kg < 5 Pass LCS - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9 % 93 70-130 Pass TRH C10-C14 % 125 70-130 Pass LCS - % Recovery BTEX 70-130 Pass Benzene % 98 70-130 Pass Toluene % 94 70-130 Pass Ethylbenzene % 94 70-130 Pass m&p-Xylenes % 94 70-130 Pass Xylenes - Total % 96 70-130 Pass LCS - % Recovery % 96 70-130 Pass LCS - % Recovery % 96 70-130 Pass LCS - % Recovery Naphthalene % 96 70-130 Pass Recovery Recovery </td <td>1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)</td> <td>ug/kg</td> <td>< 10</td> <td></td> <td>10</td> <td>Pass</td> <td></td>	1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/kg	< 10		10	Pass	
LCS - % Recovery Image: Section of the section	1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/kg	< 5		5	Pass	
LCS - % Recovery Image: Section of the section	1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/kg	< 5		5	Pass	
TRH C6-C9 % 93 70-130 Pass TRH C10-C14 % 125 70-130 Pass LCS - % Recovery 98 70-130 Pass BTEX 98 70-130 Pass Benzene % 98 70-130 Pass Toluene % 98 70-130 Pass Ethylbenzene % 94 70-130 Pass m&p-Xylenes % 94 70-130 Pass Xylenes - Total % 96 70-130 Pass LCS - % Recovery 70-130 Pass 96 70-130 Pass Naphthalene % 96 70-130 Pass 96 TRH C6-C10 % 96 70-130 Pass TRH C6-C10 % 96 70-130 Pass TRH >C10-C16 % 113 70-130 Pass LCS - % Recovery 96 70-130 Pass TRH >C10-C16 % <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
TRH C10-C14 % 125 70-130 Pass LCS - % Recovery BTEX Image: Constraint of the stress of the str	Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
LCS - % Recovery Image: Second s	TRH C6-C9	%	93		70-130	Pass	
BTEX Image: Marcine Stress of the stress of th	TRH C10-C14	%	125		70-130	Pass	
Benzene % 98 70-130 Pass Toluene % 101 70-130 Pass Ethylbenzene % 94 70-130 Pass m&p-Xylenes % 94 70-130 Pass Xylenes - Total % 96 70-130 Pass LCS - % Recovery % 96 70-130 Pass Total Recoverable Hydrocarbons - 2013 NEPM Fractions % 96 70-130 Pass Naphthalene % 96 70-130 Pass 101 TRH C6-C10 % 96 70-130 Pass TRH >C10-C16 % 113 70-130 Pass LCS - % Recovery Ital 70-130 Pass	LCS - % Recovery			•			
Toluene % 101 70-130 Pass Ethylbenzene % 94 70-130 Pass m&p-Xylenes % 96 70-130 Pass Xylenes - Total % 96 70-130 Pass LCS - % Recovery % 96 70-130 Pass Total Recoverable Hydrocarbons - 2013 NEPM Fractions V 96 70-130 Pass Naphthalene % 96 70-130 Pass 100	BTEX						
Ethylbenzene % 94 70-130 Pass m&p-Xylenes % 96 70-130 Pass Xylenes - Total % 96 70-130 Pass LCS - % Recovery % 96 70-130 Pass Total Recoverable Hydrocarbons - 2013 NEPM Fractions 70-130 Pass Naphthalene % 96 70-130 Pass TRH C6-C10 % 96 70-130 Pass TRH >C10-C16 % 76 70-130 Pass LCS - % Recovery 70-130 Pass Polycyclic Aromatic Hydrocarbons % 76 70-130 Pass		%	98		70-130	Pass	
Ethylbenzene % 94 70-130 Pass m&p-Xylenes % 96 70-130 Pass Xylenes - Total % 96 70-130 Pass LCS - % Recovery % 96 70-130 Pass Total Recoverable Hydrocarbons - 2013 NEPM Fractions 70-130 Pass Naphthalene % 96 70-130 Pass TRH C6-C10 % 96 70-130 Pass TRH >C10-C16 % 76 70-130 Pass LCS - % Recovery 70-130 Pass Polycyclic Aromatic Hydrocarbons % 76 70-130 Pass	Toluene	%	101		70-130	Pass	
m&p-Xylenes % 96 70-130 Pass Xylenes - Total % 96 0 70-130 Pass LCS - % Recovery V 96 0 70-130 Pass Total Recoverable Hydrocarbons - 2013 NEPM Fractions V V V V Naphthalene % 96 0 70-130 Pass TRH C6-C10 % 96 0 70-130 Pass TRH >C10-C16 % 113 0 70-130 Pass LCS - % Recovery V 113 0 70-130 Pass Polycyclic Aromatic Hydrocarbons M 113 0 0 10 10		%	94		70-130	Pass	
Xylenes - Total % 96 70-130 Pass LCS - % Recovery <t< td=""><td>m&p-Xylenes</td><td>%</td><td>96</td><td></td><td></td><td>Pass</td><td></td></t<>	m&p-Xylenes	%	96			Pass	
LCS - % Recovery Total Recoverable Hydrocarbons - 2013 NEPM Fractions Image: Colspan="5">Image: Colspan="5" Image: Colspan="5">Image: Colspan="5" Image:	Xylenes - Total	%	96			Pass	
Naphthalene % 96 70-130 Pass TRH C6-C10 % 76 70-130 Pass TRH >C10-C16 % 113 70-130 Pass LCS - % Recovery 70-130 Pass							
TRH C6-C10 % 76 70-130 Pass TRH >C10-C16 % 113 70-130 Pass LCS - % Recovery V V V V Polycyclic Aromatic Hydrocarbons 6 6 6 6 6	Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
TRH C6-C10 % 76 70-130 Pass TRH >C10-C16 % 113 70-130 Pass LCS - % Recovery V V V V Polycyclic Aromatic Hydrocarbons 6 1 6 1 6 1	Naphthalene	%	96		70-130	Pass	
TRH >C10-C16 % 113 70-130 Pass LCS - % Recovery <th<< td=""><td></td><td>%</td><td>76</td><td></td><td></td><td>Pass</td><td></td></th<<>		%	76			Pass	
LCS - % Recovery Polycyclic Aromatic Hydrocarbons Image: Comparison of the second			113			Pass	
Polycyclic Aromatic Hydrocarbons							
	Acenaphthene	%	127		70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Acenaphthylene	%	128	70-130	Pass	
Anthracene	%	120	70-130	Pass	
Benz(a)anthracene	%	122	70-130	Pass	
Benzo(a)pyrene	%	118	70-130	Pass	
Benzo(b&j)fluoranthene	%	121	70-130	Pass	
Benzo(g.h.i)perylene	%	115	70-130	Pass	
Benzo(k)fluoranthene	%	107	70-130	Pass	
Chrysene	%	129	70-130	Pass	
Dibenz(a.h)anthracene	%	99	70-130	Pass	
Fluoranthene	%	126	70-130	Pass	
Fluorene	%	126	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	107	70-130	Pass	
Naphthalene	%	119	70-130	Pass	
Phenanthrene	%	108	70-130	Pass	
Pyrene	%	125	70-130	Pass	
LCS - % Recovery		1			
Heavy Metals					
Arsenic	%	111	80-120	Pass	
Cadmium	%	101	80-120	Pass	
Chromium	%	112	80-120	Pass	
Copper	%	114	80-120	Pass	
Lead	%	112	80-120	Pass	
Mercury	%	111	75-125	Pass	
Nickel	%	110	80-120	Pass	
Zinc	%	111	80-120	Pass	
LCS - % Recovery	,,,		00 120	1 400	
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	%	106	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	102	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	106	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	99	50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	106	50-150	Pass	
Perfluorononanoic acid (PFNA)	%	99	50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	91	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	88	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	105	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	140	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	104	50-150	Pass	
LCS - % Recovery	/0		00 100	1 435	
Perfluoroalkyl sulfonamido substances					
Perfluorooctane sulfonamide (FOSA)	%	108	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	%	108	50-150 50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	%	99	50-150 50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N- MeFOSE)	%	101	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	%	74	50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	%	107	50-150	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-EtroSAA)	%	98	50-150	Pass	
LCS - % Recovery	/0	30	30-130	1 000	
Perfluoroalkyl sulfonic acids (PFSAs)		1			
Perfluorobutanesulfonic acid (PFBS)	%	124	50-150	Pace	
	%		50-150	Pass	
Perfluorononanesulfonic acid (PFNS)		100	50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	%	102	50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	%	90	50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	%	94	50-150	Pass	l

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Perfluoroheptanesulfonic acid (PFH	lpS)		%	138		50-150	Pass	
Perfluorooctanesulfonic acid (PFOS	6)		%	106		50-150	Pass	
Perfluorodecanesulfonic acid (PFD	S)		%	88		50-150	Pass	
LCS - % Recovery								
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)							
1H.1H.2H.2H-perfluorohexanesulfo	nic acid (4:2 FTSA)		%	107		50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfor	nic acid (6:2 FTSA)		%	93		50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfo	nic acid (8:2 FTSA)		%	96		50-150	Pass	
1H.1H.2H.2H-perfluorododecanesu	Ifonic acid (10:2 FT	SA)	%	102		50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery	1							
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1				[
TRH C6-C9	S20-Ja19956	NCP	%	82		70-130	Pass	
Spike - % Recovery		1						
BTEX				Result 1				
Benzene	S20-Ja19956	NCP	%	89		70-130	Pass	
Toluene	S20-Ja19956	NCP	%	98		70-130	Pass	
Ethylbenzene	S20-Ja19956	NCP	%	94		70-130	Pass	
m&p-Xylenes	S20-Ja19956	NCP	%	95		70-130	Pass	
o-Xylene	S20-Ja19956	NCP	%	93		70-130	Pass	
Xylenes - Total	S20-Ja19956	NCP	%	96		70-130	Pass	
Spike - % Recovery	020-0419900		70			70-130	1 855	
Total Recoverable Hydrocarbons	2012 NEPM Eraci	tions		Result 1				
Naphthalene	S20-Ja19956	NCP	%	106		70-130	Pass	
TRH C6-C10	S20-Ja19956	NCP	%	90		70-130	Pass	
	320-Ja19950		70	90		70-130	F 455	
Spike - % Recovery	-			Desult 1			1	
Polycyclic Aromatic Hydrocarbon		NOD	0/	Result 1		70.400	Deee	
Acenaphthene	M20-Ja27482	NCP	%	123		70-130	Pass	
Acenaphthylene	M20-Ja27482	NCP	%	121		70-130	Pass	
Anthracene	M20-Ja27482	NCP	%	113		70-130	Pass	
Benz(a)anthracene	M20-Ja27482	NCP	%	123		70-130	Pass	
Benzo(a)pyrene	M20-Ja27482	NCP	%	114		70-130	Pass	
Benzo(b&j)fluoranthene	M20-Ja27482	NCP	%	123		70-130	Pass	
Benzo(g.h.i)perylene	M20-Ja27482	NCP	%	112		70-130	Pass	
Benzo(k)fluoranthene	M20-Ja27482	NCP	%	105		70-130	Pass	
Chrysene	M20-Ja27482	NCP	%	105		70-130	Pass	
Dibenz(a.h)anthracene	M20-Ja27482	NCP	%	94		70-130	Pass	
Fluoranthene	M20-Ja27482	NCP	%	129		70-130	Pass	
Fluorene	M20-Ja27482	NCP	%	119		70-130	Pass	
Indeno(1.2.3-cd)pyrene	M20-Ja27482	NCP	%	127		70-130	Pass	
Naphthalene	M20-Ja27482	NCP	%	118		70-130	Pass	
Phenanthrene	M20-Ja27482	NCP	%	128		70-130	Pass	
Pyrene	M20-Ja27482	NCP	%	105		70-130	Pass	ļ
Spike - % Recovery					T T T			ļ
Heavy Metals	T			Result 1				ļ
Arsenic	M20-Ja25729	NCP	%	83		75-125	Pass	ļ
Cadmium	M20-Ja25729	NCP	%	91		75-125	Pass	
Chromium	M20-Ja25729	NCP	%	79		75-125	Pass	
Copper	M20-Ja25729	NCP	%	78		75-125	Pass	
Lead	M20-Ja25729	NCP	%	546		75-125	Fail	Q08
Mercury	M20-Ja25729	NCP	%	176		70-130	Fail	Q08
Nickel	M20-Ja25729	NCP	%	80		75-125	Pass	
Zinc	M20-Ja25729	NCP	%	308		75-125	Fail	Q08
Spike - % Recovery								

Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1				
Perfluorobutanoic acid (PFBA)	M20-Ja25372	NCP	%	108		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	M20-Ja25372	NCP	%	104		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	M20-Ja25372	NCP	%	107		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	M20-Ja25372	NCP	%	99		50-150	Pass	
Perfluorooctanoic acid (PFOA)	M20-Ja25372	NCP	%	105		50-150	Pass	
Perfluorononanoic acid (PFNA)	M20-Ja25372	NCP	%	107		50-150	Pass	
Perfluorodecanoic acid (PFDA)	M20-Ja25372	NCP	%	95		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	M20-Ja25372	NCP	%	99		50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	M20-Ja25372	NCP	%	123		50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	M20-Ja25372	NCP	%	137		50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M20-Ja25372	NCP	%	106		50-150	Pass	
Spike - % Recovery					r	I	1	
Perfluoroalkyl sulfonamido substa	nces	1		Result 1				L
Perfluorooctane sulfonamide (FOSA)	M20-Ja25372	NCP	%	114		50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M20-Ja25372	NCP	%	105		50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M20-Ja25372	NCP	%	101		50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M20-Ja25372	NCP	%	114		50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M20-Ja25372	NCP	%	81		50-150	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M20-Ja25372	NCP	%	107		50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M20-Ja25372	NCP	%	109		50-150	Pass	
Spike - % Recovery								
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1				
Perfluorobutanesulfonic acid (PFBS)	M20-Ja25372	NCP	%	143		50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	M20-Ja25372	NCP	%	118		50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M20-Ja25372	NCP	%	106		50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M20-Ja25372	NCP	%	97		50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M20-Ja25372	NCP	%	82		50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M20-Ja25372	NCP	%	128		50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	M20-Ja25372	NCP	%	114		50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	M20-Ja25372	NCP	%	100		50-150	Pass	
Spike - % Recovery				1			1	
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)	1		Result 1				
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M20-Ja25372	NCP	%	107		50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M20-Ja25372	NCP	%	104		50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M20-Ja25372	NCP	%	109		50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M20-Ja25372	NCP	%	104			50-150	Pass	
Spike - % Recovery	11120 0020012		70	104			00 100	1 455	
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1					
TRH C10-C14	M20-Ja25637	CP	%	80			70-130	Pass	
Spike - % Recovery	11120 0020001		70	00			10100	1 455	
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions		Result 1					
TRH >C10-C16	M20-Ja25637	CP	%	72			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	S20-Ja19955	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S20-Ja19955	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S20-Ja19955	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S20-Ja19955	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S20-Ja19955	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S20-Ja19955	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S20-Ja19955	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate	·								
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions		Result 1	Result 2	RPD			
Naphthalene	S20-Ja19955	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S20-Ja19955	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate			00						
Polycyclic Aromatic Hydrocarbo	าร			Result 1	Result 2	RPD			
Acenaphthene	M20-Ja24881	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M20-Ja24881	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M20-Ja24881	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M20-Ja24881	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M20-Ja24881	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M20-Ja24881	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M20-Ja24881	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M20-Ja24881	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M20-Ja24881	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M20-Ja24881	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M20-Ja24881	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M20-Ja24881	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M20-Ja24881	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M20-Ja24881	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M20-Ja24881	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M20-Ja24881	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M20-Ja24827	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	M20-Ja24827	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M20-Ja24827	NCP	mg/kg	34	35	1.0	30%	Pass	
Copper	M20-Ja24827 M20-Ja24827	NCP	mg/kg	12	12	1.0	30%	Pass	
Lead	M20-Ja24827 M20-Ja24827	NCP	mg/kg	12	12	1.0	30%	Pass	
Mercury	M20-Ja24827 M20-Ja24827	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
wordury		NCP	mg/kg	47	< 0.1 48	1.0	30%	Pass	
Nickel	M20-Ja24827								

Duplicate									
Duphoate				Result 1	Result 2	RPD			
% Moisture	M20-Ja25615	CP	%	18	18	2.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	Result 1	Result 2	RPD					
TRH C10-C14	M20-Ja25637	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M20-Ja25637	CP	mg/kg	< 50	55	13	30%	Pass	
TRH C29-C36	M20-Ja25637	CP	mg/kg	66	71	7.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	M20-Ja25637	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M20-Ja25637	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M20-Ja25637	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				1					
				Result 1	Result 2	RPD			
% Moisture	M20-Ja25637	CP	%	20	20	<1	30%	Pass	
Duplicate				1				_	
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	M20-Ja25637	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	M20-Ja25637	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	M20-Ja25637	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	M20-Ja25637	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	M20-Ja25637	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	M20-Ja25637	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	M20-Ja25637	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	M20-Ja25637	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	M20-Ja25637	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	M20-Ja25637	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M20-Ja25637	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate				1				-	
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	M20-Ja25637	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M20-Ja25637	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M20-Ja25637	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M20-Ja25637	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M20-Ja25637	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M20-Ja25637	СР	ug/kg	< 10	< 10	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M20-Ja25637	СР	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	M20-Ja25637	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	M20-Ja25637	СР	ug/kg	11	9.1	18	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M20-Ja25637	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M20-Ja25637	СР	ug/kg	< 5	< 5	<1	30%	Pass	

Duplicate									
Perfluoroalkyl sulfonic acids (PFS	As)	Result 1	Result 2	RPD					
Perfluorohexanesulfonic acid (PFHxS)	M20-Ja25637	СР	ug/kg	20	19	4.0	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M20-Ja25637	СР	ug/kg	7.4	7.2	2.0	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	M20-Ja25637	СР	ug/kg	1200	1100	10	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	M20-Ja25637	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
n:2 Fluorotelomer sulfonic acids (Result 1	Result 2	RPD					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M20-Ja25637	СР	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M20-Ja25637	СР	ug/kg	< 10	< 10	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M20-Ja25637	СР	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M20-Ja25637	СР	ug/kg	< 5	< 5	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

0000	
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
N09	Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.
N11	Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.
N15	Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation).

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

Authorised By

Ursula Long	Analytical Services Manager
Emily Rosenberg	Senior Analyst-Metal (VIC)
Harry Bacalis	Senior Analyst-Volatile (VIC)
Joseph Edouard	Senior Analyst-Organic (VIC)
Sarah McCallion	Senior Analyst-PFAS (QLD)

li fil

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

🛟 eurofins

Environment Testing

Nation Partners 306 / 50 Holt Street, Surry Hills NSW 2010

Attention:

Luke Clements

Report Project name Project ID Received Date **700221-L** NP19039 FRNSW-TARRO Feb 04, 2020

Client Sample ID			S29(0.0-0.2)	S33(0.2-0.4)	S32(0.0-0.2)
Sample Matrix			US Leachate	US Leachate	US Leachate
Eurofins Sample No.			B20-Fe04453	B20-Fe04454	B20-Fe04455
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
•	LOR	Linit	0an 22, 2020	0an 22, 2020	0an 22, 2020
Test/Reference Polycyclic Aromatic Hydrocarbons	LUR	Unit			
	0.001				+ 0.001
Acenaphthene	0.001	mg/L	-	-	< 0.001
Acenaphthylene	0.001	mg/L	-	-	< 0.001
Anthracene	0.001	mg/L	-	-	< 0.001
Benz(a)anthracene	0.001	mg/L	-	-	< 0.001
Benzo(a)pyrene	0.001	mg/L	-	-	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	-	-	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	-	-	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	-	-	< 0.001
Chrysene	0.001	mg/L	-	-	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	-	-	< 0.001
Fluoranthene	0.001	mg/L	-	-	< 0.001
Fluorene	0.001	mg/L	-	-	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	-	-	< 0.001
Naphthalene	0.001	mg/L	-	-	< 0.001
Phenanthrene	0.001	mg/L	-	-	< 0.001
Pyrene	0.001	mg/L	-	-	< 0.001
Total PAH*	0.001	mg/L	-	-	< 0.001
2-Fluorobiphenyl (surr.)	1	%	-	-	60
p-Terphenyl-d14 (surr.)	1	%	-	-	94
Heavy Metals					
Lead	0.01	mg/L	-	-	0.69
USA Leaching Procedure					
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0
pH (initial)	0.1	pH Units	5.0	5.0	6.8
pH (Leachate fluid)	0.1	pH Units	5.0	5.0	4.9
pH (off)	0.1	pH Units	5.0	5.0	5.1
pH (USA HCI addition)	0.1	pH Units	1.0	0.9	1.7
Perfluoroalkyl carboxylic acids (PFCAs)		11			
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	0.17	0.12	
Perfluoropentanoic acid (PFPeA) ^{N11}	0.03	ug/L	0.33	0.12	_
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	0.58	0.49	_
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	0.38	0.09	
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	0.14	0.09	-
Perfluorononanoic acid (PFOA) ^{M1}	0.01	ug/L ug/L	0.33	< 0.01	-
Perfluorononanoic acid (PFNA) ¹¹¹	0.01	ug/L ug/L	< 0.08	< 0.01	-

NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			S29(0.0-0.2)	S33(0.2-0.4)	S32(0.0-0.2)
Sample Matrix			US Leachate	US Leachate	US Leachate
Eurofins Sample No.			B20-Fe04453	B20-Fe04454	B20-Fe04455
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
Test/Reference	LOR	Unit			
Perfluoroalkyl carboxylic acids (PFCAs)		1			
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	-
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	-
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01	-
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	-
13C4-PFBA (surr.)	1	%	35	47	-
13C5-PFPeA (surr.)	1	%	40	39	-
13C5-PFHxA (surr.)	1	%	58	51	-
13C4-PFHpA (surr.)	1	%	70	55	-
13C8-PFOA (surr.)	1	%	92	64	-
13C5-PFNA (surr.)	1	%	104	76	-
13C6-PFDA (surr.)	1	%	82	70	-
13C2-PFUnDA (surr.)	1	%	47	68	-
13C2-PFDoDA (surr.)	1	%	22	41	-
13C2-PFTeDA (surr.)	1	%	32	25	-
Perfluoroalkyl sulfonamido substances					
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	-
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	-
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	-
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	-
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	_
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	_
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	_
13C8-FOSA (surr.)	1	%	83	106	-
D3-N-MeFOSA (surr.)	1	%	47	59	-
D5-N-EtFOSA (surr.)	1	%	43	49	-
D7-N-MeFOSE (surr.)	1	%	102	143	-
D9-N-EtFOSE (surr.)	1	%	78	102	-
D5-N-EtFOSAA (surr.)	1	%	54	86	-
D3-N-MeFOSAA (surr.)	1	%	67	82	-
Perfluoroalkyl sulfonic acids (PFSAs)					
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	0.22	0.33	-
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	0.02	0.02	-
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	0.07	0.13	-
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	0.18	0.24	-
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	1.5	2.8	-
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	0.14	0.34	-
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	20	39	-
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	0.01	-
13C3-PFBS (surr.)	1	%	109	118	-
18O2-PFHxS (surr.)	1	%	120	121	-
13C8-PFOS (surr.)	1	%	105	126	-

Client Sample ID Sample Matrix			S29(0.0-0.2) US Leachate	S33(0.2-0.4) US Leachate	S32(0.0-0.2) US Leachate
Eurofins Sample No.			B20-Fe04453	B20-Fe04454	B20-Fe04455
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
Test/Reference	LOR	Unit			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)					
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)^{N11}	0.01	ug/L	< 0.01	< 0.01	-
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{№11}	0.05	ug/L	< 0.05	< 0.05	-
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	-
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)^{N15}	0.01	ug/L	< 0.01	< 0.01	-
13C2-4:2 FTSA (surr.)	1	%	29	24	-
13C2-6:2 FTSA (surr.)	1	%	91	52	-
13C2-8:2 FTSA (surr.)	1	%	80	61	-
PFASs Summations					
Sum (PFHxS + PFOS)*	0.01	ug/L	21.5	41.8	-
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	20.33	39.47	-
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	21.83	42.27	-
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	23.27	43.48	-
Sum of PFASs (n=30)*	0.1	ug/L	23.76	44.22	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	Feb 06, 2020	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Heavy Metals	Melbourne	Feb 05, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
USA Leaching Procedure	Melbourne	Feb 05, 2020	14 Days
- Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes			
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Feb 06, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Feb 06, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Feb 06, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Feb 06, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

Bit Microart Testing Bit Microart Reading (Microart Reading and Microart R	•	OURO	fine			A	ustra	lia								New Zealand	
Address: Solo / 50 Holl Streich, Sury His NSW 201 Operator Project ID Duc: Fe b0 0, 2020 Project ID: NP19039 Fax: 9405 821 580 Duc: 500 / 200						esting	Monter andend hone : ATA #	rey Roa ong Sou +61 3 8 1261	th VIC 3 564 500		Unit F3 16 Mar Lane C Phone	3, Build rs Road Cove W : +61 2	est NSW 2066 9900 8400	1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600	2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261	35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51	Christchurch 43 Detroit Drive Rolleston, Christchurch 7 Phone : 0800 856 450 IANZ # 1290
			306 / 50 Holt Surry Hills					R	eport hone:	#:					Due: Priority:	Feb 10, 2020 5 Day	AM
Sample DetailSample				RRO											Eurofins Analytica	I Services Manager : U	Irsula Long
Sydney Laboratory - NATA Site # 18217 NATA Site # 18217 X X Brisbane Laboratory - NATA Site # 20794 X X X Perth Laboratory - NATA Site # 23736 X X X External Laboratory - NATA Site # 23736 X X X No Sample ID Sample Date Sampling Time Matrix LAB ID X X 1 S29(0.4-0.6) Jan 22, 2020 Soil B20-Fe04450 X X 2 S30(0.4-0.6) Jan 22, 2020 Soil B20-Fe04451 X X 3 S33A(0.6-0.8) Jan 22, 2020 Soil B20-Fe04452 X X 4 S29(0.0-0.2) Jan 22, 2020 US Leachate B20-Fe04453 X X			Sa	mple Detail			Lead	Polycyclic Aromatic Hydrocarbons	Leaching		Moisture Set	and Polyfluoroalkyl Substances					
Arisbane Laboratory - NATA Site # 20794 x	Nelb	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х								
Pert Haboratory - NATA Site # 2373 Image: Name of the state st													_				
External Laboratory Sample Date Sampling Time Matrix LAB ID Image: Comparison of the c							-			X	X	Х	_				
No Sample ID Sample Date Sampling Time Matrix LAB ID Image: Comparison of the compari				/36			-						_				
1 S29(0.4-0.6) Jan 22, 2020 Soil B20-Fe04450 X X 2 S30(0.4-0.6) Jan 22, 2020 Soil B20-Fe04451 X X 3 S33A(0.6-0.8) Jan 22, 2020 Soil B20-Fe04452 X X 4 S29(0.0-0.2) Jan 22, 2020 US Leachate B20-Fe04453 X X				Sampling Time	Matrix	LAB ID							-				
B S33A(0.6-0.8) Jan 22, 2020 Soil B20-Fe04452 X X 4 S29(0.0-0.2) Jan 22, 2020 US Leachate B20-Fe04453 X X		S29(0.4-0.6)	Jan 22, 2020		Soil	B20-Fe04450					Х	Х					
S29(0.0-0.2) Jan 22, 2020 US Leachate B20-Fe04453 X X			Jan 22, 2020		Soil	B20-Fe04451					Х	Х					
	3	S33A(0.6-0.8)	Jan 22, 2020		Soil	B20-Fe04452					X	Х	_				
5 S33(0 2-0 4) Jan 22 2020 US Leachate B20-Fe04454 X X X										-		-	_				
		S33(0.2-0.4)	Jan 22, 2020		US Leachate	B20-Fe04454	-		<u> </u>	X		Х	4				
6 S32(0.0-0.2) Jan 22, 2020 US Leachate B20-Fe04455 X X X V Test Counts 1 1 3 3 3 5			Jan 22, 2020		US Leachate	B20-Fe04455							_				

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Heavy Metals						
Lead	mg/L	< 0.01		0.01	Pass	
Method Blank						
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	ug/L	< 0.05		0.05	Pass	
Perfluoropentanoic acid (PFPeA)	ug/L	< 0.01		0.01	Pass	
Perfluorohexanoic acid (PFHxA)	ug/L	< 0.01		0.01	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/L	< 0.01		0.01	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.01		0.01	Pass	
Perfluorononanoic acid (PFNA)	ug/L	< 0.01		0.01	Pass	
Perfluorodecanoic acid (PFDA)	ug/L	< 0.01		0.01	Pass	
Perfluoroundecanoic acid (PFUnDA)	uq/L	< 0.01		0.01	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/L	< 0.01		0.01	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/L	< 0.01		0.01	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/L	< 0.01		0.01	Pass	
Method Blank		1 010 1		0.01	1 400	
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)	ug/L	< 0.05		0.05	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/L	< 0.05		0.05	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/L	< 0.05		0.05	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-	uy/L	< 0.00		0.00	1 433	
MeFOSE)	ug/L	< 0.05		0.05	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/L	< 0.05		0.05	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/L	< 0.05		0.05	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/L	< 0.05		0.05	Pass	
Method Blank						
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS)	ug/L	< 0.01		0.01	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/L	< 0.01		0.01	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/L	< 0.01		0.01	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/L	< 0.01		0.01	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/L	< 0.01		0.01	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/L	< 0.01		0.01	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/L	< 0.01		0.01	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/L	< 0.01		0.01	Pass	
Method Blank	ug,∟	, , 0.01		0.01	1 433	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/L	< 0.01		0.01	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/L	< 0.01		0.05	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/L ug/L	< 0.03		0.03	Pass	
1H.1H.2H.2H.perfluorododecanesulfonic acid (0.2 FTSA)		< 0.01		0.01	Pass	
	ug/L	< 0.01				Qualifying
Test Lab Sample ID QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery			1	1		
Heavy Metals		Result 1				
Lead M20-Fe05452 NCP	%	101		75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Perfluoroalkyl carboxylic acids (Pl	FCAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	B20-Fe04481	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	B20-Fe04481	NCP	ug/L	0.02	0.02	4.0	30%	Pass	
Perfluorohexanoic acid (PFHxA)	B20-Fe04481	NCP	ug/L	0.09	0.08	7.0	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	B20-Fe04481	NCP	ug/L	0.02	0.02	5.0	30%	Pass	
Perfluorooctanoic acid (PFOA)	B20-Fe04481	NCP	ug/L	0.04	0.04	5.0	30%	Pass	
Perfluorononanoic acid (PFNA)	B20-Fe04481	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	B20-Fe04481	NCP	ug/L	0.01	0.01	2.0	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	B20-Fe04481	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	B20-Fe04481	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	B20-Fe04481	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	B20-Fe04481	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate								-	
Perfluoroalkyl sulfonamido substa	inces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	B20-Fe04481	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B20-Fe04481	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B20-Fe04481	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	B20-Fe04481	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	B20-Fe04481	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B20-Fe04481	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B20-Fe04481	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate					1				
Perfluoroalkyl sulfonic acids (PFS	As)	1		Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	B20-Fe04481	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	B20-Fe04481	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	B20-Fe04481	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B20-Fe04481	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B20-Fe04481	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B20-Fe04481	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	B20-Fe04481	NCP	ug/L	0.01	0.01	2.0	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	B20-Fe04481	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Duplicate									
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) Result 1 Result 2 RPD									
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B20-Fe04481	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	B20-Fe04481	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B20-Fe04481	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B20-Fe04481	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Heavy Metals Result 1 Result 2 RPD									
Lead	M20-Fe05452	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	

Comments

N/A
Yes
No

Qualifier Codes/Comments

Code Do orinti

Code	Description
C01	Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
N11	Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.
N15	Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation).

Authorised By

Ursula Long Analytical Services Manager Senior Analyst-Metal (VIC) Emily Rosenberg Joseph Edouard Senior Analyst-Organic (VIC) Senior Analyst-PFAS (QLD) Sarah McCallion

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profils, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

🛟 eurofins

Environment Testing

Nation Partners 306 / 50 Holt Street, Surry Hills NSW 2010

ISW 2010

Attention:

Luke Clements

Report Project name Project ID Received Date 700221-S NP19039 FRNSW-TARRO Feb 04, 2020

Client Sample ID			S29(0.4-0.6)	S30(0.4-0.6)	S33A(0.6-0.8)
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			B20-Fe04450	B20-Fe04451	B20-Fe04452
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
Test/Reference	LOR	Unit			
% Moisture	1	%	19	26	23
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	14	7.8	7.8
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	56	12	59
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	^{N09} 18	7.2	^{N09} 16
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	^{N09} 110	^{N09} 27	^{N09} 47
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	35	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	109	130	118
13C5-PFPeA (surr.)	1	%	87	104	96
13C5-PFHxA (surr.)	1	%	86	122	96
13C4-PFHpA (surr.)	1	%	105	130	120
13C8-PFOA (surr.)	1	%	80	108	94
13C5-PFNA (surr.)	1	%	92	116	118
13C6-PFDA (surr.)	1	%	67	110	94
13C2-PFUnDA (surr.)	1	%	134	141	155
13C2-PFDoDA (surr.)	1	%	126	144	156
13C2-PFTeDA (surr.)	1	%	68	73	86
Perfluoroalkyl sulfonamido substances					
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	79	84	95

NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			S29(0.4-0.6)	S30(0.4-0.6)	S33A(0.6-0.8)
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			B20-Fe04450	B20-Fe04451	B20-Fe04452
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
Test/Reference	LOR	Unit			
Perfluoroalkyl sulfonamido substances	•				
D3-N-MeFOSA (surr.)	1	%	84	97	107
D5-N-EtFOSA (surr.)	1	%	88	93	116
D7-N-MeFOSE (surr.)	1	%	78	90	92
D9-N-EtFOSE (surr.)	1	%	56	72	71
D5-N-EtFOSAA (surr.)	1	%	69	71	77
D3-N-MeFOSAA (surr.)	1	%	68	83	86
Perfluoroalkyl sulfonic acids (PFSAs)		•			
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	22	< 5	49
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	6.1	< 5	20
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	^{N09} 26	< 5	^{N09} 54
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	^{N09} 220	^{N09} 53	^{N09} 450
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	^{N09} 62	^{N09} 15	^{N09} 55
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	^{N09} 990	^{N09} 490	^{N09} 690
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	96	129	102
18O2-PFHxS (surr.)	1	%	75	102	103
13C8-PFOS (surr.)	1	%	109	103	101
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		·			
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)^{N^{15}}	5	ug/kg	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	73	119	105
13C2-6:2 FTSA (surr.)	1	%	84	122	101
13C2-8:2 FTSA (surr.)	1	%	94	125	122
PFASs Summations	-				
Sum (PFHxS + PFOS)*	5	ug/kg	1210	543	1140
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	1100	517	737
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	1320	570	1187
Sum of WA DWER PFAS (n=10)*	10	ug/kg	1430	597	1318.8
Sum of PFASs (n=30)*	50	ug/kg	1559.1	612	1447.8

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
% Moisture	Brisbane	Feb 05, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Feb 05, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Feb 05, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Feb 05, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Feb 05, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

Bit Microart Testing Bit Microart Reading (Microart Reading and Microart R	•	OURO	fine			A	ustra	lia								New Zealand	
Address: Solo / 50 Holl Streich, Sury His NSW 201 Operator Project ID Duc: Fe b0 0, 2020 Project ID: NP19039 Fax: 9405 821 580 Duc: 500 / 200						esting	Monter andend hone : ATA #	rey Roa ong Sou +61 3 8 1261	th VIC 3 564 500		Unit F3 16 Mar Lane C Phone	3, Build rs Road Cove W : +61 2	est NSW 2066 9900 8400	1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600	2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261	35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51	Christchurch 43 Detroit Drive Rolleston, Christchurch 7 Phone : 0800 856 450 IANZ # 1290
			306 / 50 Holt Surry Hills					R	eport hone:	#:					Due: Priority:	Feb 10, 2020 5 Day	АМ
Sample DetailSample				RRO											Eurofins Analytica	I Services Manager : U	Irsula Long
Sydney Laboratory - NATA Site # 18217 NATA Site # 18217 X X Brisbane Laboratory - NATA Site # 20794 X X X Perth Laboratory - NATA Site # 23736 X X X External Laboratory - NATA Site # 23736 X X X No Sample ID Sample Date Sampling Time Matrix LAB ID X X 1 S29(0.4-0.6) Jan 22, 2020 Soil B20-Fe04450 X X 2 S30(0.4-0.6) Jan 22, 2020 Soil B20-Fe04451 X X 3 S33A(0.6-0.8) Jan 22, 2020 Soil B20-Fe04452 X X 4 S29(0.0-0.2) Jan 22, 2020 US Leachate B20-Fe04453 X X			Sa	mple Detail			Lead	Polycyclic Aromatic Hydrocarbons	Leaching		Moisture Set	and Polyfluoroalkyl Substances					
Arisbane Laboratory - NATA Site # 20794 x	Nelb	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х								
Pert Haboratory - NATA Site # 2373 Image: Name of the state st													_				
External Laboratory Sample Date Sampling Time Matrix LAB ID Image: Comparison of the c							-			X	X	Х	_				
No Sample ID Sample Date Sampling Time Matrix LAB ID Image: Comparison of the compari				/36			-						_				
1 S29(0.4-0.6) Jan 22, 2020 Soil B20-Fe04450 X X 2 S30(0.4-0.6) Jan 22, 2020 Soil B20-Fe04451 X X 3 S33A(0.6-0.8) Jan 22, 2020 Soil B20-Fe04452 X X 4 S29(0.0-0.2) Jan 22, 2020 US Leachate B20-Fe04453 X X				Sampling Time	Matrix	LAB ID							-				
B S33A(0.6-0.8) Jan 22, 2020 Soil B20-Fe04452 X X 4 S29(0.0-0.2) Jan 22, 2020 US Leachate B20-Fe04453 X X		S29(0.4-0.6)	Jan 22, 2020		Soil	B20-Fe04450					Х	Х					
S29(0.0-0.2) Jan 22, 2020 US Leachate B20-Fe04453 X X			Jan 22, 2020		Soil	B20-Fe04451					Х	Х					
	3	S33A(0.6-0.8)	Jan 22, 2020		Soil	B20-Fe04452					X	Х	_				
5 S33(0 2-0 4) Jan 22 2020 US Leachate B20-Fe04454 X X X										-		-	_				
		S33(0.2-0.4)	Jan 22, 2020		US Leachate	B20-Fe04454	-		<u> </u>	X		Х	4				
6 S32(0.0-0.2) Jan 22, 2020 US Leachate B20-Fe04455 X X X V Test Counts 1 1 3 3 3 5			Jan 22, 2020		US Leachate	B20-Fe04455							_				

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	ug/kg	< 5		5	Pass	
Perfluoropentanoic acid (PFPeA)	ug/kg	< 5		5	Pass	
Perfluorohexanoic acid (PFHxA)	ug/kg	< 5		5	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/kg	< 5		5	Pass	
Perfluorooctanoic acid (PFOA)	ug/kg	< 5		5	Pass	
Perfluorononanoic acid (PFNA)	ug/kg	< 5		5	Pass	
Perfluorodecanoic acid (PFDA)	ug/kg	< 5		5	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/kg	< 5		5	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/kg	< 5		5	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/kg	< 5		5	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/kg	< 5		5	Pass	
Method Blank		<u> </u>				
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)	ug/kg	< 5		5	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/kg	< 5		5	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/kg	< 5		5	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N- MeFOSE)	ug/kg	< 5		5	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/kg	< 5		5	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/kg	< 10		10	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/kg	< 10		10	Pass	
Method Blank	ug/itg			10	1 400	
Perfluoroalkyl sulfonic acids (PFSAs)				1		
Perfluorobutanesulfonic acid (PFBS)	ug/kg	< 5		5	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/kg ug/kg	< 5		5	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/kg ug/kg	< 5		5	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/kg ug/kg	< 5		5	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/kg ug/kg	< 5		5	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg ug/kg	< 5		5	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/kg ug/kg	< 5		5	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/kg ug/kg	< 5		5	Pass	
Method Blank	ug/kg				F 855	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		I		1	1	
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ua/ka	. 5		E	Pass	
	ug/kg	< 5 < 10		5 10		
1H.1H.2H.2H.Perfluorooctanesulfonic acid (6:2 FTSA)	ug/kg				Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/kg	< 5		5	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/kg	< 5		5	Pass	
LCS - % Recovery		T		1	1	
Perfluoroalkyl carboxylic acids (PFCAs)	0/	100		E0.450	Dece	
Perfluorobutanoic acid (PFBA)	%	106		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	148		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	128	<u> </u>	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	104		50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	119	<u> </u>	50-150	Pass	
Perfluorononanoic acid (PFNA)	%	116	<u> </u>	50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	81		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	93	<u> </u>	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	141		50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	142		50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	124		50-150	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery								
Perfluoroalkyl sulfonamido substa	nces							
Perfluorooctane sulfonamide (FOSA	.)		%	135		50-150	Pass	
N-methylperfluoro-1-octane sulfonar	nide (N-MeFOSA)		%	104		50-150	Pass	
N-ethylperfluoro-1-octane sulfonami	de (N-EtFOSA)		%	129		50-150	Pass	
2-(N-methylperfluoro-1-octane sulfor	namido)-ethanol (N	1-						
MeFOSE)			%	115		50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfona	· · · · ·	,	%	77		50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoa			%	98		50-150	Pass	
N-methyl-perfluorooctanesulfonamic	loacetic acid (N-Me	eFOSAA)	%	95		50-150	Pass	
LCS - % Recovery				1	F 1	1	1	
Perfluoroalkyl sulfonic acids (PFS)								
Perfluorobutanesulfonic acid (PFBS)	-		%	85		50-150	Pass	
Perfluorononanesulfonic acid (PFNS	1		%	87		50-150	Pass	
Perfluoropropanesulfonic acid (PFP	/		%	108		50-150	Pass	
Perfluoropentanesulfonic acid (PFPe	/		%	87		50-150	Pass	
Perfluorohexanesulfonic acid (PFHx	,		%	90		50-150	Pass	
Perfluoroheptanesulfonic acid (PFH			%	104		50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)		%	104		50-150	Pass	
Perfluorodecanesulfonic acid (PFDS	5)		%	95		50-150	Pass	
LCS - % Recovery				1		1		
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)							
1H.1H.2H.2H-perfluorohexanesulfor	nic acid (4:2 FTSA)		%	125		50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfon	ic acid (6:2 FTSA)		%	101		50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfor	nic acid (8:2 FTSA)		%	108		50-150	Pass	
1H.1H.2H.2H-perfluorododecanesul	fonic acid (10:2 FT	SA)	%	86		50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	F	F	1	
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1				
Perfluorobutanoic acid (PFBA)	M20-Fe02104	NCP	%	110		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	M20-Fe02104	NCP	%	146		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	M20-Fe02104	NCP	%	134		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	M20-Fe02104	NCP	%	105		50-150	Pass	
Perfluorooctanoic acid (PFOA)	M20-Fe02104	NCP	%	127		50-150	Pass	
Perfluorononanoic acid (PFNA)	M20-Fe02104	NCP	%	112		50-150	Pass	
Perfluorodecanoic acid (PFDA)	M20-Fe02104	NCP	%	81		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	M20-Fe02104	NCP	%	100		50-150	Pass	
Perfluorododecanoic acid								
(PFDoDA)	M20-Fe02104	NCP	%	139	+	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	M20-Fe02104	NCP	%	142		50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M20-Fe02104	NCP	%	123		50-150	Pass	
Spike - % Recovery								
Perfluoroalkyl sulfonamido substa	nces	,		Result 1				
Perfluorooctane sulfonamide (FOSA)	M20-Fe02104	NCP	%	127		50-150	Pass	
	1	1		1				
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M20-Fe02104	NCP	%	100		50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M20-Fe02104 M20-Fe02104	NCP NCP	%	100 125		50-150 50-150	Pass Pass	
sulfonamide (N-MeFOSA) N-ethylperfluoro-1-octane								

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M20-Fe02104	NCP	%	103			50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M20-Fe02104	NCP	%	100			50-150	Pass	
Spike - % Recovery									
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1					
Perfluorobutanesulfonic acid (PFBS)	M20-Fe02104	NCP	%	90			50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	M20-Fe02104	NCP	%	98			50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M20-Fe02104	NCP	%	112			50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M20-Fe02104	NCP	%	90			50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M20-Fe02104	NCP	%	103			50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M20-Fe02104	NCP	%	95			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	B20-Fe02578	NCP	%	101			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	M20-Fe02104	NCP	%	103			50-150	Pass	
Spike - % Recovery									
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M20-Fe02104	NCP	%	129			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M20-Fe02104	NCP	%	104			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M20-Fe02104	NCP	%	119			50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M20-Fe02104	NCP	%	113			50-150	Pass	
		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate				I	1 1		1	1	
	1			Result 1	Result 2	RPD			
% Moisture	N20-Fe02874	NCP	%	7.0	7.2	3.0	30%	Pass	
Duplicate				1	1			1	
Perfluoroalkyl carboxylic acids (Pl	FCAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	S20-Fe01758	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	S20-Fe01758	NCP	ug/kg	7.4	7.3	2.0	30%	Pass	
Perfluorohexanoic acid (PFHxA)	S20-Fe01758	NCP	ug/kg	11	12	14	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	S20-Fe01758	NCP	ug/kg	7.3	7.8	7.0	30%	Pass	
Perfluorooctanoic acid (PFOA)	S20-Fe01758	NCP	ug/kg	42	47	10	30%	Pass	
Perfluorononanoic acid (PFNA)	S20-Fe01758	NCP	ug/kg	< 5	5.2	10	30%	Pass	
Perfluorodecanoic acid (PFDA)	S20-Fe01758	NCP	ug/kg	11	13	16	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	S20-Fe01758	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	S20-Fe01758	NCP	ug/kg	< 5	5.1	14	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	S20-Fe01758	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	S20-Fe01758	NCP	ug/kg	< 5	< 5	<1	30%	Pass	

Duplicate									
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	S20-Fe01758	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	S20-Fe01758	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	S20-Fe01758	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	S20-Fe01758	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	S20-Fe01758	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	S20-Fe01758	NCP	ug/kg	13	14	8.0	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	S20-Fe01758	NCP	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonic acids (PFS)		Result 1	Result 2	RPD					
Perfluorobutanesulfonic acid (PFBS)	S20-Fe01758	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	S20-Fe01758	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	S20-Fe01758	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	M20-Fe04181	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate				1					
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)			Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	S20-Fe01758	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	S20-Fe01758	NCP	ug/kg	< 10	< 10	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	S20-Fe01758	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	S20-Fe01758	NCP	ug/kg	< 5	< 5	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

 N09
 Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.

 Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time N15 to the analyte and no recovery correction has been made (Internal Standard Quantitation).

Authorised By

Ursula Long Sarah McCallion Analytical Services Manager Senior Analyst-PFAS (QLD)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profils, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

🛟 eurofins

Environment Testing

Nation Partners 306 / 50 Holt Street, Surry Hills NSW 2010

SW 2010

Attention:

Luke Clements

Report Project name Project ID Received Date 701333-S NP19039 FRNSW-TARRO Feb 11, 2020

Date Sampled Jan 22, 2020 Jan 22, 2020 Jan 22, 2020 Test/Reference LOR Unit	Client Sample ID			S29(0.6-0.8)	S29(0.8-1.0)	S30(0.6-0.8)
Date Sampled Jan 22, 2020 Jan 22, 2020 Jan 22, 2020 Test/Reference LOR Unit	Sample Matrix			Soil	Soil	Soil
Test/Reference LOR Unit % Moisture 1 % 15 28 28 Perfluoroalkyl carboxylic acids (PFCAs) Perfluorobutanoic acid (PFBA) ^{M11} 5 ug/kg <5 <5 <5 Perfluorobentanoic acid (PFHA) ^{M11} 5 ug/kg 77 50 9.6 Perfluorohexanoic acid (PFHA) ^{M11} 5 ug/kg 34 17 5.9 Perfluorohexanoic acid (PFDA) ^{M11} 5 ug/kg 34 17 5.9 Perfluorohexanoic acid (PFDA) ^{M11} 5 ug/kg 33 <5 <5 Perfluorohexanoic acid (PFDA) ^{M11} 5 ug/kg <5 <5 <5 Perfluorohexanoic acid (PFDA) ^{M11} 5 ug/kg <5 <5 <5 Perfluorohexanoic acid (PFDA) ^{M11} 5 ug/kg <5 <5 <5 Perfluorohexanoic acid (PFTDA) ^{M11} 5 ug/kg <5 <5 <5 Perfluorothexanoic acid (PFTDA) ^{M11} ug	Eurofins Sample No.			B20-Fe13018	B20-Fe13019	B20-Fe13020
% Moisture 1 % 15 28 28 Perfluoroalkyl carboxylic acids (PFCAs)	Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
% Moisture 1 % 15 28 28 Perfluoroalkyl carboxylic acids (PFCAs)	Test/Reference	LOR	Unit			
Perfluoroalkyl carboxylic acids (PFCAs) Perfluoropentanoic acid (PFBA) ^{N11} 5 ug/kg < 5		Lon	Onit			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	% Moisture	1	%	15	28	28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Perfluoroalkyl carboxylic acids (PFCAs)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	16	11	5.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	77	50	9.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	34	17	5.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	^{N09} 43	^{N09} 23	^{N09} 9.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	5.3	< 5	< 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg		< 5	< 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13C4-PFBA (surr.)	1	%	112	114	128
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13C5-PFPeA (surr.)	1	%	125	137	148
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	13C5-PFHxA (surr.)	1	%	110	118	145
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	13C4-PFHpA (surr.)	1	%	119	111	139
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	13C8-PFOA (surr.)	1	%	110	108	126
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13C5-PFNA (surr.)	1	%	133	122	135
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13C6-PFDA (surr.)	1	%	99	109	121
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13C2-PFUnDA (surr.)	1	%	137	135	132
Perfluoroalkyl sulfonamido substancesPerfluorooctane sulfonamide (FOSA)^N115ug/kg< 5	13C2-PFDoDA (surr.)	1	%	129	134	128
Perfluorooctane sulfonamide (FOSA)^{N11}5ug/kg< 5< 5< 5N-methylperfluoro-1-octane sulfonamide (N- MeFOSA)^{N11}5ug/kg< 5	13C2-PFTeDA (surr.)	1	%	141	139	160
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA)^{N11}5 ug/kgug/kg< 5 < 5< 5 < 5N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)^{N11}5 ug/kgug/kg< 5 < 5	Perfluoroalkyl sulfonamido substances		_			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} 5 ug/kg < 5 < 5 < 5	N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} 5 ug/kg < 5 < 5 < 5	1	5	ug/kg	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-		5	ug/kg	< 5	< 5	< 5
EtFOSE) ^{N11} 5 ug/kg < 5 < 5 < 5	2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}			< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11} 10 ug/kg < 10 < 10 < 10	N-ethyl-perfluorooctanesulfonamidoacetic acid (N-					
N-methyl-perfluorooctanesulfonamidoacetic acid (N- MeFOSAA) ^{N11} 10 ug/kg < 10 < 10 < 10	N-methyl-perfluorooctanesulfonamidoacetic acid (N-					
13C8-FOSA (surr.) 1 % 124 127 123						

NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			S29(0.6-0.8)	S29(0.8-1.0)	S30(0.6-0.8)
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			B20-Fe13018	B20-Fe13019	B20-Fe13020
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
Test/Reference	LOR	Unit			
Perfluoroalkyl sulfonamido substances	•				
D3-N-MeFOSA (surr.)	1	%	99	106	108
D5-N-EtFOSA (surr.)	1	%	118	140	136
D7-N-MeFOSE (surr.)	1	%	120	120	124
D9-N-EtFOSE (surr.)	1	%	62	106	100
D5-N-EtFOSAA (surr.)	1	%	94	96	101
D3-N-MeFOSAA (surr.)	1	%	89	92	91
Perfluoroalkyl sulfonic acids (PFSAs)	•	•			
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	59	48	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	11	9.9	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	59	39	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	^{N09} 380	^{N09} 170	^{N09} 55
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	^{N09} 18	^{N09} 11	5.8
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	^{N09} 640	^{N09} 220	^{N09} 380
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	117	116	138
1802-PFHxS (surr.)	1	%	86	108	121
13C8-PFOS (surr.)	1	%	114	121	107
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		·			
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)^{N15}	5	ug/kg	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	131	108	125
13C2-6:2 FTSA (surr.)	1	%	101	83	143
13C2-8:2 FTSA (surr.)	1	%	110	119	135
PFASs Summations					
Sum (PFHxS + PFOS)*	5	ug/kg	1020	390	435
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	683	243	389.7
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	1063	413	444.7
Sum of WA DWER PFAS (n=10)*	10	ug/kg	1249	539	465.3
Sum of PFASs (n=30)*	50	ug/kg	1342.3	598.9	471.1

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
% Moisture	Brisbane	Feb 11, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Feb 12, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Feb 12, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Feb 12, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Feb 12, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

	OUKO	fine				Austra	lia				New Zealand	
	50 005 085 521	web : www.eurofin		nment To	esting	Dandeno Phone : • NATA #	rey Road ong South VIC 31 +61 3 8564 5000	Sydney Unit F3, Building F 75 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch Phone : 0800 856 450 IANZ # 1290
	mpany Name: dress:	Nation Partn 306 / 50 Holt Surry Hills NSW 2010					Order N Report # Phone: Fax:			Received: Due: Priority: Contact Name:	Feb 11, 2020 8:50 Feb 14, 2020 3 Day Luke Clements	AM
	oject Name: oject ID:	NP19039 FRNSW-TAF	RRO							Eurofins Analytica	I Services Manager : L	Irsula Long
Melb	oourne Laborato	Sa ory - NATA Site	mple Detail # 1254 & 142	271		Set	and Polyfluoroalkyl Substances (PFASs)					
		- NATA Site # 1										
		y - NATA Site #				х	X					
Perth	h Laboratory - N	NATA Site # 237	'36									
Exte	rnal Laboratory	/										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
	S29(0.6-0.8)	Jan 22, 2020		Soil	B20-Fe13018	Х	Х					
2	S29(0.8-1.0)	Jan 22, 2020		Soil	B20-Fe13019	х	х					
3	S30(0.6-0.8)	Jan 22, 2020		Soil	B20-Fe13020	Х	Х					
[est	Counts					3	3					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	ug/kg	< 5	5	Pass	
Perfluoropentanoic acid (PFPeA)	ug/kg	< 5	5	Pass	
Perfluorohexanoic acid (PFHxA)	ug/kg	< 5	5	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/kg	< 5	5	Pass	
Perfluorooctanoic acid (PFOA)	ug/kg	< 5	5	Pass	
Perfluorononanoic acid (PFNA)	ug/kg	< 5	5	Pass	
Perfluorodecanoic acid (PFDA)	ug/kg	< 5	5	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/kg	< 5	5	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/kg	< 5	5	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/kg	< 5	5	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/kg	< 5	5	Pass	
Method Blank			 •	•	
Perfluoroalkyl sulfonamido substances					
Perfluorooctane sulfonamide (FOSA)	ug/kg	< 5	5	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/kg	< 5	5	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/kg	< 5	5	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N- MeFOSE)	ug/kg	< 5	5	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/kg	< 5	5	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/kg	< 10	10	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/kg	< 10	10	Pass	
Method Blank	- 5- 5				
Perfluoroalkyl sulfonic acids (PFSAs)					
Perfluorobutanesulfonic acid (PFBS)	ug/kg	< 5	5	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/kg	< 5	5	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/kg	< 5	5	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/kg	< 5	5	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	< 5	5	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	< 5	5	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/kg	< 5	5	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/kg	< 5	5	Pass	
Method Blank	uging			1 400	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)					
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/kg	< 5	5	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/kg	< 10	10	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/kg	< 5	5	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/kg	< 5	5	Pass	
LCS - % Recovery	ug/11g			1 400	
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	%	95	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	92	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	85	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	96	50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	90	50-150	Pass	
Perfluorononanoic acid (PFNA)	%	109	50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	98	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	116	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	114	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	114	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	98	50-150	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery								
Perfluoroalkyl sulfonamido substa	nces							
Perfluorooctane sulfonamide (FOSA	.)		%	87		50-150	Pass	
N-methylperfluoro-1-octane sulfonar	nide (N-MeFOSA)		%	101		50-150	Pass	
N-ethylperfluoro-1-octane sulfonami	de (N-EtFOSA)		%	85		50-150	Pass	
2-(N-methylperfluoro-1-octane sulfor MeFOSE)	namido)-ethanol (N	1-	%	92		50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfona	mido)-ethanol (N-E	EtFOSE)	%	85		50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoa		,	%	99		50-150	Pass	
N-methyl-perfluorooctanesulfonamic		,	%	104		50-150	Pass	
LCS - % Recovery		, ,						
Perfluoroalkyl sulfonic acids (PFS)	As)							
Perfluorobutanesulfonic acid (PFBS)			%	86		50-150	Pass	
Perfluorononanesulfonic acid (PFNS	-		%	80		50-150	Pass	
Perfluoropropanesulfonic acid (PFP	rS)		%	98		50-150	Pass	
Perfluoropentanesulfonic acid (PFPe	1		%	78		50-150	Pass	
Perfluorohexanesulfonic acid (PFHx	/		%	89		50-150	Pass	
Perfluoroheptanesulfonic acid (PFH	/		%	94		50-150	Pass	
Perfluorooctanesulfonic acid (PFOS	/		%	84		50-150	Pass	
Perfluorodecanesulfonic acid (PFDS	5)		%	79		50-150	Pass	
LCS - % Recovery	,							
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)							
1H.1H.2H.2H-perfluorohexanesulfor	· · · ·		%	96		50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfon	· · · · · · · · ·		%	71		50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfor			%	92		50-150	Pass	
1H.1H.2H.2H-perfluorododecanesul			%	92		50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Perfluoroalkyl carboxylic acids (PF	-CAs)			Result 1				
Perfluorobutanoic acid (PFBA)	M20-Fe13143	NCP	%	82		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	M20-Fe13143	NCP	%	96		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	M20-Fe13143	NCP	%	82		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	M20-Fe13143	NCP	%	90		50-150	Pass	
Perfluorooctanoic acid (PFOA)	M20-Fe13143	NCP	%	90		50-150	Pass	
Perfluorononanoic acid (PFNA)	M20-Fe13143	NCP	%	93		50-150	Pass	
Perfluorodecanoic acid (PFDA)	M20-Fe13143	NCP	%	89		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	M20-Fe13143	NCP	%	113		50-150	Pass	
Perfluorododecanoic acid								
(PFDoDA)	M20-Fe13143	NCP	%	116		50-150	Pass	
Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid	M20-Fe13143	NCP	%	106		50-150	Pass	
(PFTeDA)	M20-Fe13143	NCP	%	96		50-150	Pass	ļ
Spike - % Recovery				-	1			
Perfluoroalkyl sulfonamido substa	nces	1 1		Result 1				
Perfluorooctane sulfonamide (FOSA)	M20-Fe13143	NCP	%	87		50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M20-Fe13143	NCP	%	105		50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M20-Fe13143	NCP	%	91		50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M20-Fe13143	NCP	%	92		50-150	Pass	
2-(N-ethylperfluoro-1-octane		1		I		1		

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M20-Fe13143	NCP	%	93			50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M20-Fe13143	NCP	%	98			50-150	Pass	
Spike - % Recovery									
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1					
Perfluorobutanesulfonic acid (PFBS)	M20-Fe13143	NCP	%	91			50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	M20-Fe13143	NCP	%	88			50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M20-Fe13143	NCP	%	95			50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M20-Fe13143	NCP	%	81			50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M20-Fe13143	NCP	%	88			50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M20-Fe13143	NCP	%	80			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	B20-Fe10693	NCP	%	78			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	M20-Fe13143	NCP	%	81			50-150	Pass	
Spike - % Recovery									
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M20-Fe13143	NCP	%	92			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M20-Fe13143	NCP	%	107			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2	M20-Fe13143	NCP	%	104			50-150	Pass	
FTSA) 1H.1H.2H.2H-	M20-Fe13143	INCE	70	104			50-150	F 455	
perfluorododecanesulfonic acid (10:2 FTSA)	M20-Fe13143	NCP	%	92			50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	B20-Fe13018	CP	%	15	13	13	30%	Pass	
Duplicate				-					
Perfluoroalkyl carboxylic acids (Pl	FCAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	

Duplicate									
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M20-Fe13142	NCP	ug/kg	< 10	< 10	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M20-Fe13142	NCP	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	B20-Fe10686	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate				-					
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)			Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M20-Fe13142	NCP	ug/kg	< 10	< 10	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M20-Fe13142	NCP	ug/kg	< 5	< 5	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

 N09
 Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.

 Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time N15 to the analyte and no recovery correction has been made (Internal Standard Quantitation).

Authorised By

Ursula Long Sarah McCallion Analytical Services Manager Senior Analyst-PFAS (QLD)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profils, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

🛟 eurofins

Environment Testing

Nation Partners 306 / 50 Holt Street, Surry Hills **NSW 2010**

Attention:

Luke Clements

Report
Project name
Project ID
Received Date

703149-S-V2 **FRNSW TARRO** NP19039 Feb 20, 2020

Client Sample ID			FP3_0.0-0.2	FP4_0.0-0.2	FP5_0.0-0.2	FP6_0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N20-Fe27072	N20-Fe27073	N20-Fe27074	N20-Fe27075
Date Sampled			Feb 20, 2020	Feb 20, 2020	Feb 20, 2020	Feb 20, 2020
Test/Reference	LOR	Unit				
% Moisture	1	%	24	17	19	19
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	54	73	75	80
13C5-PFPeA (surr.)	1	%	66	85	91	103
13C5-PFHxA (surr.)	1	%	65	90	86	90
13C4-PFHpA (surr.)	1	%	63	80	76	90
13C8-PFOA (surr.)	1	%	66	77	82	93
13C5-PFNA (surr.)	1	%	78	88	86	99
13C6-PFDA (surr.)	1	%	72	79	84	89
13C2-PFUnDA (surr.)	1	%	71	90	92	106
13C2-PFDoDA (surr.)	1	%	70	85	88	90
13C2-PFTeDA (surr.)	1	%	77	104	101	115
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	59	73	72	82

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			FP3_0.0-0.2	FP4_0.0-0.2	FP5_0.0-0.2	FP6_0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N20-Fe27072	N20-Fe27073	N20-Fe27074	N20-Fe27075
Date Sampled			Feb 20, 2020	Feb 20, 2020	Feb 20, 2020	Feb 20, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonamido substances						
D3-N-MeFOSA (surr.)	1	%	48	72	73	79
D5-N-EtFOSA (surr.)	1	%	59	81	83	92
D7-N-MeFOSE (surr.)	1	%	32	57	59	59
D9-N-EtFOSE (surr.)	1	%	24	44	46	45
D5-N-EtFOSAA (surr.)	1	%	117	152	146	169
D3-N-MeFOSAA (surr.)	1	%	140	191	INT	INT
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	^{N09} 18	^{N09} 6.9	^{N09} 21	^{N09} 25
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	63	74	75	79
18O2-PFHxS (surr.)	1	%	61	70	70	80
13C8-PFOS (surr.)	1	%	59	71	68	82
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{№11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	129	128	128	159
13C2-6:2 FTSA (surr.)	1	%	183	95	120	133
13C2-8:2 FTSA (surr.)	1	%	116	95	89	116
13C2-10:2 FTSA (surr.)	1	%	70	76	80	92
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	18	6.9	21	25
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	18	6.9	21	25
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	18	6.9	21	25
Sum of WA DWER PFAS (n=10)*	10	ug/kg	18	< 10	21	25
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50	< 50

Client Sample ID			FP7_0.0-0.2	FP8_0.0-0.2	FP9_0.0-0.2	FP10_0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N20-Fe27076	N20-Fe27077	N20-Fe27078	N20-Fe27079
Date Sampled			Feb 20, 2020	Feb 20, 2020	Feb 20, 2020	Feb 20, 2020
Test/Reference	LOR	Unit				
% Moisture	1	%	30	17	14	15

Client Sample ID Sample Matrix			FP7_0.0-0.2 Soil	FP8_0.0-0.2 Soil	FP9_0.0-0.2 Soil	FP10_0.0-0.2 Soil
Eurofins Sample No.			N20-Fe27076	N20-Fe27077	N20-Fe27078	N20-Fe27079
•						
Date Sampled			Feb 20, 2020	Feb 20, 2020	Feb 20, 2020	Feb 20, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5 5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	9.7	< 5	_	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15} Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	5	ug/kg %	< 5 71	< 5 73	< 5 72	63
13C5-PFPeA (surr.)	1	%	86	87	88	71
13C5-PFPeA (suit.) 13C5-PFHxA (suit.)	1	%	83	84	78	71
13C4-PFHpA (surr.)	1	%	75	83	71	66
13C8-PFOA (surr.)	1	%	78	81	77	71
13C5-PFNA (surr.)	1	%	82	81	86	74
13C6-PFDA (surr.)	1	%	77	77	79	74
13C2-PFUnDA (surr.)	1	%	84	93	93	82
13C2-PFDoDA (surr.)	1	%	82	85	81	74
13C2-PFTeDA (surr.)	1	%	104	107	93	94
Perfluoroalkyl sulfonamido substances	•	70	101	107		
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-						
MeFOŚAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	69	77	67	63
D3-N-MeFOSA (surr.)	1	%	70	72	60	65
D5-N-EtFOSA (surr.)	1	%	81	87	72	74
D7-N-MeFOSE (surr.)	1	%	54	55	45	49
D9-N-EtFOSE (surr.)	1	%	36	49	34	42
D5-N-EtFOSAA (surr.)	1	%	150	157	141	137
D3-N-MeFOSAA (surr.)	1	%	182	INT	176	163
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	^{N09} 12	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	^{N09} 8.7	< 5	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	N09110	^{N09} 140	^{N09} 33	^{N09} 150
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	^{N09} 19	< 5	< 5	< 5

Client Sample ID			FP7_0.0-0.2	FP8_0.0-0.2	FP9_0.0-0.2	FP10_0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N20-Fe27076	N20-Fe27077	N20-Fe27078	N20-Fe27079
Date Sampled			Feb 20, 2020	Feb 20, 2020	Feb 20, 2020	Feb 20, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonic acids (PFSAs)						
18O2-PFHxS (surr.)	1	%	69	76	68	63
13C8-PFOS (surr.)	1	%	67	67	68	54
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{№11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 $FTSA$) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 $\ensuremath{FTSA}\xspace)^{N^{11}}$	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	126	143	119	105
13C2-6:2 FTSA (surr.)	1	%	114	121	124	99
13C2-8:2 FTSA (surr.)	1	%	83	83	96	71
13C2-10:2 FTSA (surr.)	1	%	77	87	81	70
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	118.7	140	33	150
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	110	140	33	150
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	118.7	140	33	150
Sum of WA DWER PFAS (n=10)*	10	ug/kg	118.7	140	33	150
Sum of PFASs (n=30)*	50	ug/kg	159.4	140	< 50	150

Client Sample ID			FP11_0.0-0.2	FP12_0.0-0.2	FP13_0.0-0.2	FP14_0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N20-Fe27080	N20-Fe27081	N20-Fe27082	N20-Fe27083
Date Sampled			Feb 20, 2020	Feb 20, 2020	Feb 20, 2020	Feb 20, 2020
Test/Reference	LOR	Unit				
% Moisture	1	%	20	24	17	13
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	76	72	77	83
13C5-PFPeA (surr.)	1	%	89	94	92	103
13C5-PFHxA (surr.)	1	%	92	84	90	94
13C4-PFHpA (surr.)	1	%	83	80	84	91
13C8-PFOA (surr.)	1	%	80	77	92	97
13C5-PFNA (surr.)	1	%	93	92	95	104
13C6-PFDA (surr.)	1	%	82	81	88	98
13C2-PFUnDA (surr.)	1	%	96	96	103	113

Client Sample ID			FP11_0.0-0.2	FP12_0.0-0.2	FP13_0.0-0.2	FP14_0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N20-Fe27080	N20-Fe27081	N20-Fe27082	N20-Fe27083
Date Sampled			Feb 20, 2020	Feb 20, 2020	Feb 20, 2020	Feb 20, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)						
13C2-PFDoDA (surr.)	1	%	84	82	87	96
13C2-PFTeDA (surr.)	1	%	116	115	110	126
Perfluoroalkyl sulfonamido substances		_				
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N- MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	10	<u>ug/kg</u> %	80	74	79	91
D3-N-MeFOSA (surr.)	1	%	74	67	72	78
D5-N-EtFOSA (surr.)	1	%	83	77	86	87
D7-N-MeFOSE (surr.)	1	%	51	47	54	59
D9-N-EtFOSE (surr.)	1	%	38	40	40	39
D5-N-EtFOSAA (surr.)	1	%	159	160	163	179
D3-N-MeFOSAA (surr.)	1	%	195	191	200	INT
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	^{N09} 20	< 5	< 5	< 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	82	80	82	83
1802-PFHxS (surr.)	1	%	74	73	77	77
13C8-PFOS (surr.) n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	I	%	75	73	76	85
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	r.					
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	<u> 10</u> 5	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	5	ug/kg ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	<u>ug/kg</u> %	138	122	121	149
13C2-6:2 FTSA (surr.)	1	%	90	100	160	193
13C2-8:2 FTSA (surr.)	1	%	83	100	107	130
13C2-10:2 FTSA (surr.)	1	%	82	91	93	98
PFASs Summations	•	•				-
Sum (PFHxS + PFOS)*	5	ug/kg	20	< 5	< 5	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	20	< 5	< 5	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	20	< 5	< 5	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	20	< 10	< 10	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50	< 50

Client Sample ID			FP15_0.0-0.2	FP16_0.0-0.2	QC9	S16C_0.2-0.4
Sample Matrix			Soil	Soil	Soil	Sil
•						
Eurofins Sample No.			N20-Fe27084	N20-Fe27085	N20-Fe27086	N20-Fe27092
Date Sampled			Feb 20, 2020	Feb 20, 2020	Feb 20, 2020	Feb 19, 2020
Test/Reference	LOR	Unit				
% Moisture	1	%	25	12	12	22
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5	5.6
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5 5	ug/kg ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11} Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg ug/kg	< 5 < 5	< 5	< 5	< 5
· · ·	5	ug/kg ug/kg		< 5	< 5	
Perfluoroundecanoic acid (PFUnDA) ^{N11} Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5 < 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFD0DA) ^{M15}	5	ug/kg ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	<u>ug/kg</u> %	73	67	60	75
13C5-PFPeA (surr.)	1	%	94	81	71	95
13C5-PFHxA (surr.)	1	%	78	82	74	80
13C4-PFHpA (surr.)	1	%	73	73	65	83
13C8-PFOA (surr.)	1	%	79	73	68	73
13C5-PFNA (surr.)	1	%	82	82	74	84
13C6-PFDA (surr.)	1	%	76	78	67	73
13C2-PFUnDA (surr.)	1	%	96	82	82	92
13C2-PFDoDA (surr.)	1	%	82	77	73	88
13C2-PFTeDA (surr.)	1	%	106	90	84	114
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N- MeFOSAA) ^{N11}	10		< 10	< 10	- 10	< 10
13C8-FOSA (surr.)	10	ug/kg %	75	69	< 10 62	74
D3-N-MeFOSA (surr.)	1	%	75	64	55	74
D5-N-EtFOSA (surr.)	1	%	83	68	62	91
D7-N-MeFOSE (surr.)	1	%	56	48	43	55
D9-N-EtFOSE (surr.)	1	%	47	32	33	54
D5-N-EtFOSAA (surr.)	1	%	156	133	116	154
D3-N-MeFOSAA (surr.)	1	%	188	174	156	INT
Perfluoroalkyl sulfonic acids (PFSAs)		,,,				
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	< 5	5.8
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	< 5	< 5	< 5	^{N09} 170

Client Sample ID			FP15_0.0-0.2	FP16_0.0-0.2	QC9	S16C_0.2-0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N20-Fe27084	N20-Fe27085	N20-Fe27086	N20-Fe27092
Date Sampled			Feb 20, 2020	Feb 20, 2020	Feb 20, 2020	Feb 19, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	73	76	64	73
18O2-PFHxS (surr.)	1	%	70	66	63	75
13C8-PFOS (surr.)	1	%	70	62	61	65
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{№11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	108	110	103	97
13C2-6:2 FTSA (surr.)	1	%	98	148	77	73
13C2-8:2 FTSA (surr.)	1	%	90	80	78	87
13C2-10:2 FTSA (surr.)	1	%	84	74	67	79
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	< 5	< 5	175.8
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	170
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	175.8
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	< 10	< 10	181.4
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50	187.9

Client Sample ID			S16C_0.4-0.6	S16A_0.2-0.4	S16A_0.4-0.6	S16B_0.2-0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N20-Fe27093	N20-Fe27099	N20-Fe27100	N20-Fe27101
Date Sampled			Feb 19, 2020	Feb 19, 2020	Feb 19, 2020	Feb 19, 2020
Test/Reference	LOR	Unit				
% Moisture	1	%	20	20	20	17
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	7.9	7.8	6.6
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	17	36	40	28
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	11	30	32	16
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	5.8	15	13	7.6
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	^{N09} 19	^{N09} 17	6.0
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	5.2	18	18	9.7
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	64	67	73	49
13C5-PFPeA (surr.)	1	%	72	79	83	60
13C5-PFHxA (surr.)	1	%	71	75	85	54
13C4-PFHpA (surr.)	1	%	70	66	76	54
13C8-PFOA (surr.)	1	%	72	72	75	54
13C5-PFNA (surr.)	1	%	71	77	80	53

Client Sample ID			S16C_0.4-0.6	S16A_0.2-0.4	S16A_0.4-0.6	S16B_0.2-0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N20-Fe27093	N20-Fe27099	N20-Fe27100	N20-Fe27101
Date Sampled			Feb 19, 2020	Feb 19, 2020	Feb 19, 2020	Feb 19, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)						
13C6-PFDA (surr.)	1	%	65	48	51	50
13C2-PFUnDA (surr.)	1	%	86	87	98	71
13C2-PFDoDA (surr.)	1	%	78	80	93	61
13C2-PFTeDA (surr.)	1	%	100	101	119	75
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
$2\mbox{-}(N\mbox{-}ethylperfluoro\mbox{-}1\mbox{-}octane\mbox{-}sulfonamido)\mbox{-}ethanol\mbox{(N-EtFOSE)}^{N1}$	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)^{\text{N11}}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)^{N^{1}}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	69	68	76	55
D3-N-MeFOSA (surr.)	1	%	71	75	81	59
D5-N-EtFOSA (surr.)	1	%	82	85	93	64
D7-N-MeFOSE (surr.)	1	%	45	46	62	40
D9-N-EtFOSE (surr.)	1	%	49	49	56	33
D5-N-EtFOSAA (surr.)	1	%	136	145	161	111
D3-N-MeFOSAA (surr.)	1	%	168	172	193	135
Perfluoroalkyl sulfonic acids (PFSAs)	_					
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	5.8	8.2	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	^{N09} 15	^{N09} 7.4	17
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5 ^{N09} 9.8	5.8 ^{N09} 63	^{N09} 6.3	< 5 ^{N09} 20
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg		^{N09} 9.8	^{N09} 52	
Perfluoroheptanesulfonic acid (PFHpS) ^{N15} Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg ug/kg	< 5 ^{N09} 150	^{N09} 2200	^{N09} 1900	< 5 ^{N09} 580
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5 5	ug/kg	< 5	< 5	< 5	^{N09} 18
13C3-PFBS (surr.)	1	<u>ug/kg</u> %	72	71	73	51
1802-PFHxS (surr.)	1	%	62	65	75	51
13C8-PFOS (surr.)	1	%	60	90	95	85
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		70				
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{№11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{W11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	85	86	111	58
13C2-6:2 FTSA (surr.)	1	%	80	90	99	67
13C2-8:2 FTSA (surr.)	1	%	71	65	74	50
13C2-10:2 FTSA (surr.)	1	%	70	79	90	59

Client Sample ID Sample Matrix			S16C_0.4-0.6 Soil	S16A_0.2-0.4 Soil	S16A_0.4-0.6 Soil	S16B_0.2-0.4 Soil
Eurofins Sample No.			N20-Fe27093	N20-Fe27099	N20-Fe27100	N20-Fe27101
Date Sampled			Feb 19, 2020	Feb 19, 2020	Feb 19, 2020	Feb 19, 2020
Test/Reference	LOR	Unit				
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	159.8	2263	1952	600
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	150	2219	1917	586
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	159.8	2282	1969	606
Sum of WA DWER PFAS (n=10)*	10	ug/kg	193.6	2376.7	2070	664.2
Sum of PFASs (n=30)*	50	ug/kg	198.8	2425.3	2112.7	708.9

Client Sample ID			S16B_0.4-0.6	QC4	TARRO_PIT 1	TARRO_PIT 2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N20-Fe27102	N20-Fe27103	N20-Fe27109	N20-Fe27110
Date Sampled			Feb 19, 2020	Feb 19, 2020	Feb 20, 2020	Feb 20, 2020
Test/Reference	LOR	Unit				
0/ Mainture	1	0(05		50	10
% Moisture Perfluoroalkyl carboxylic acids (PFCAs)		%	25	22	59	40
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	6.2	8.3	< 5	< 5
Perfluoropentanoic acid (PFPA) ^{N11}	5		30	46	< 5	< 5
	-	ug/kg	17		-	
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg		50 24	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	9.5	N0941	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	^{N09} 7.8		< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	5.9	43	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	87	68	42	61
13C5-PFPeA (surr.)	1	%	102	80	55	77
13C5-PFHxA (surr.)	1	%	105	81	45	73
13C4-PFHpA (surr.)	1	%	90	73	43	71
13C8-PFOA (surr.)	1	%	91	71	46	71
13C5-PFNA (surr.)	1	%	96	70	49	76
13C6-PFDA (surr.)	1	%	77	36	49	71
13C2-PFUnDA (surr.)	1	%	120	94	50	74
13C2-PFDoDA (surr.)	1	%	108	88	45	77
13C2-PFTeDA (surr.)	1	%	129	109	37	74
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	5.2	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	89	75	37	54

Client Sample ID			S16B_0.4-0.6	QC4	TARRO_PIT 1	TARRO_PIT 2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N20-Fe27102	N20-Fe27103	N20-Fe27109	N20-Fe27110
Date Sampled			Feb 19, 2020	Feb 19, 2020	Feb 20, 2020	Feb 20, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonamido substances						
D3-N-MeFOSA (surr.)	1	%	99	76	23	39
D5-N-EtFOSA (surr.)	1	%	114	94	33	59
D7-N-MeFOSE (surr.)	1	%	75	62	19	30
D9-N-EtFOSE (surr.)	1	%	73	50	17	26
D5-N-EtFOSAA (surr.)	1	%	196	152	66	99
D3-N-MeFOSAA (surr.)	1	%	INT	191	83	141
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	11	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	^{N09} 13	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	^{N09} 9.7	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	^{N09} 22	^{N09} 120	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	^{N09} 27	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	^{N09} 610	^{N09} 2900	^{N09} 16	^{N09} 34
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	95	74	48	72
18O2-PFHxS (surr.)	1	%	85	60	51	66
13C8-PFOS (surr.)	1	%	122	98	87	67
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 $FTSA$) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)^{N1}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	118	95	63	114
13C2-6:2 FTSA (surr.)	1	%	104	81	69	96
13C2-8:2 FTSA (surr.)	1	%	99	70	55	107
13C2-10:2 FTSA (surr.)	1	%	103	78	38	64
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	632	3020	16	34
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	617.8	2941	16	34
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	639.8	3061	16	34
Sum of WA DWER PFAS (n=10)*	10	ug/kg	702.5	3200.3	16	34
Sum of PFASs (n=30)*	50	ug/kg	708.4	3293	< 50	< 50

Client Sample ID			FP1_0.0-0.2	FP2_0.0-0.2	S34_0.0-0.2	S34_0.2-0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N20-Fe27111	N20-Fe27112	N20-Fe27129	N20-Fe27130
Date Sampled			Feb 20, 2020	Feb 20, 2020	Feb 19, 2020	Feb 19, 2020
Test/Reference	LOR	Unit				
% Moisture	1	%	23	21	20	19

Client Sample ID Sample Matrix			FP1_0.0-0.2 Soil	FP2_0.0-0.2 Soil	S34_0.0-0.2 Soil	S34_0.2-0.4 Soil
Eurofins Sample No.			N20-Fe27111	N20-Fe27112	N20-Fe27129	N20-Fe27130
·						
Date Sampled			Feb 20, 2020	Feb 20, 2020	Feb 19, 2020	Feb 19, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)	_					
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5 73	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	94	69 83	70 86	64
13C5-PFPeA (surr.) 13C5-PFHxA (surr.)	1	%	86	77	85	57
13C4-PFHpA (surr.)	1	%	79	73	86	55
13C8-PFOA (surr.)	1	%	82	83	86	56
13C5-PFNA (surr.)	1	%	94	84	95	58
13C6-PFDA (sur.)	1	%	85	78	77	49
13C2-PFUnDA (surr.)	1	%	91	92	97	69
13C2-PFDoDA (surr.)	1	%	90	82	90	67
13C2-PFTeDA (surr.)	1	%	92	92	115	76
Perfluoroalkyl sulfonamido substances	1	70	52	52	110	10
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N-						
	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N- MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	65	71	77	54
D3-N-MeFOSA (surr.)	1	%	56	62	75	58
D5-N-EtFOSA (surr.)	1	%	73	78	84	66
D7-N-MeFOSE (surr.)	1	%	44	44	46	38
D9-N-EtFOSE (surr.)	1	%	35	38	41	40
D5-N-EtFOSAA (surr.)	1	%	143	144	160	107
D3-N-MeFOSAA (surr.)	1	%	178	176	198	126
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	< 5	5.5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	^{N09} 6.4	^{N09} 47	^{N09} 380	^{N09} 270
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	75	72	80	52

Client Sample ID Sample Matrix			FP1_0.0-0.2 Soil	FP2_0.0-0.2 Soil	S34_0.0-0.2 Soil	S34_0.2-0.4 Soil
Eurofins Sample No.			N20-Fe27111	N20-Fe27112	N20-Fe27129	N20-Fe27130
•						
Date Sampled			Feb 20, 2020	Feb 20, 2020	Feb 19, 2020	Feb 19, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonic acids (PFSAs)						
18O2-PFHxS (surr.)	1	%	77	72	71	50
13C8-PFOS (surr.)	1	%	76	72	58	46
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{№11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{№11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{№11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{№11}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	141	136	119	81
13C2-6:2 FTSA (surr.)	1	%	127	142	91	69
13C2-8:2 FTSA (surr.)	1	%	114	100	78	55
13C2-10:2 FTSA (surr.)	1	%	73	77	81	57
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	6.4	47	380	275.5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	6.4	47	380	270
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	6.4	47	380	275.5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	47	380	275.5
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	380	275.5

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
% Moisture	Brisbane	Feb 20, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Feb 24, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Feb 24, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Feb 24, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Feb 24, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

🛟 eurofins					Australia								New Zealand		
ABN - 50 005 085 521 web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com						Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261			Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290	
	Company Name: Nation Partners Pty Ltd Address: 306 / 50 Holt Street, Surry Hills NSW 2010						Re Pi	rder I eport none: ax:	#:		703149 0405 821 580		Received: Due: Priority: Contact Name:	Feb 20, 2020 11:10 AM Feb 27, 2020 5 Day Luke Clements	
	oject Name: oject ID:	FRNSW TAF NP19039	RO										Eurofins Analytica	l Services Manager : U	Irsula Long
	Sample Detail							HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)					
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71											
Syd	ney Laboratory	- NATA Site # 1	8217					Х							
Bris	bane Laborator	y - NATA Site #	20794			Х	Х		Х	Х					
Pert	h Laboratory - N	IATA Site # 237	'36								_				
Exte	rnal Laboratory				1										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						_				
1	FP3_0.0-0.2	Feb 20, 2020		Soil	N20-Fe27072	_			X	Х	_				
2		Feb 20, 2020		Soil	N20-Fe27073	_			X	X	4				
3	FP5_0.0-0.2	Feb 20, 2020		Soil	N20-Fe27074	+			X	X	4				
4	FP6_0.0-0.2	Feb 20, 2020		Soil	N20-Fe27075	+			X	X	4				
5	FP7_0.0-0.2	Feb 20, 2020		Soil	N20-Fe27076				X	X	4				
6	FP8_0.0-0.2	Feb 20, 2020		Soil	N20-Fe27077	+			X	X	4				
7	FP9_0.0-0.2	Feb 20, 2020		Soil	N20-Fe27078	+			X	X	4				
8	FP10_0.0-0.2	Feb 20, 2020		Soil	N20-Fe27079				X	X	4				
9	FP11_0.0-0.2	Feb 20, 2020		Soil	N20-Fe27080				X	X	-				
10	FP12_0.0-0.2	Feb 20, 2020		Soil	N20-Fe27081				Х	Х					

ABN - 50 005 085 521 web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com				Australia								New Zealand	
				Phone : +61 3 8564 5000 NATA # 1261			175 0	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Nation Partner 306 / 50 Holt S Surry Hills NSW 2010	-			Re Ph	der N eport none: ix:	#:		703149 0405 821 580		Received: Due: Priority: Contact Name:	Feb 20, 2020 11:10 Feb 27, 2020 5 Day Luke Clements	АМ
Project Name: Project ID:	FRNSW TARF NP19039	RO									Eurofins Analytica	I Services Manager : U	Irsula Long
	CANCELLED	HOLD	HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)								
Melbourne Laborator													
Sydney Laboratory -						Х							
Brisbane Laboratory				X	X		X	X	-				
Perth Laboratory - N			No. 5						-				
11 FP13_0.0-0.2		Soil	N20-Fe27082				X	X	-				
12 FP14_0.0-0.2		Soil	N20-Fe27083		+		X	X	-				
	Feb 20, 2020 Feb 20, 2020	Soil Soil	N20-Fe27084 N20-Fe27085				X X	X X	{				
	Feb 20, 2020 Feb 20, 2020	Soil	N20-Fe27085 N20-Fe27086				X	X	{				
	Feb 20, 2020	Water	N20-Fe27086					x	•				
	Feb 19, 2020	Water	N20-Fe27088					х	1				
18 TARRO_PIT 1		Water	N20-Fe27089					х	1				
19 TARRO_PIT 2		Water	N20-Fe27090					х	1				
	Feb 19, 2020	Soil	N20-Fe27091	Х					1				
	Feb 19, 2020	Soil	N20-Fe27092				Х	Х	1				
22 S16C_0.4-0.6		Soil	N20-Fe27093				Х	Х					

Environment Testing				Australia								New Zealand		
				Phone : +61 3 8564 5000 NATA # 1261			175 0	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290	
Company Name: Address:	Nation Partners Pty 306 / 50 Holt Stree Surry Hills NSW 2010				Re	rder N eport none: ax:	#:		03149 405 821 580		Received: Due: Priority: Contact Name:	Feb 20, 2020 11:10 Feb 27, 2020 5 Day Luke Clements	АМ	
Project Name: Project ID:	FRNSW TARRO NP19039										Eurofins Analytica	I Services Manager : U	Irsula Long	
Sample Detail						HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)						
Melbourne Laborato		4 & 14271												
Sydney Laboratory -						Х								
Brisbane Laboratory		1		X	X		Х	X						
Perth Laboratory - N) Matan	N00 E-07005		-			v						
	Feb 19, 2020 Feb 19, 2020	Water Water	N20-Fe27095 N20-Fe27096					X X						
25 FIELD_BLANK 1902		Water	N20-Fe27098					x						
26 SW07A	Feb 19, 2020	Water	N20-Fe27098					Х						
	Feb 19, 2020	Soil	N20-Fe27099				х	Х						
28 S16A_0.4-0.6	Feb 19, 2020	Soil	N20-Fe27100				Х	Х						
29 S16B_0.2-0.4	Feb 19, 2020	Soil	N20-Fe27101				Х	Х						
30 S16B_0.4-0.6	Feb 19, 2020	Soil	N20-Fe27102				Х	Х						
31 QC4	Feb 19, 2020	Soil	N20-Fe27103				Х	Х						
32 MW03	Feb 20, 2020	Water	N20-Fe27106					Х						
33 MW02	Feb 20, 2020	Water	N20-Fe27107					Х						
34 MW01	Feb 20, 2020	Water	N20-Fe27108					Х						

ABN - 50 005 085 521 web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com				Austra	lia						New Zealand		
				Phone : +61 3 8564 5000 NATA # 1261			175 0	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Nation Partners 306 / 50 Holt Str Surry Hills NSW 2010	•			Re Pl	rder N eport hone: ax:	#:		703149 1405 821 580		Received: Due: Priority: Contact Name:	Feb 20, 2020 11:10 Feb 27, 2020 5 Day Luke Clements	AM
Project Name: Project ID:	FRNSW TARRO NP19039)									Eurofins Analytica	l Services Manager : U	Irsula Long
	CANCELLED	HOLD	HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)								
Melbourne Laborator	•					X							
Sydney Laboratory -				V		Х	V						
Brisbane Laboratory Perth Laboratory - N		1 34		X	X		X	X					
35 TARRO_PIT 1		Soil	N20-Fe27109				x	X	•				
36 TARRO_PIT 2		Soil	N20-Fe27110				X	X					
	Feb 20, 2020	Soil	N20-Fe27111				x	x					
	Feb 20, 2020	Soil	N20-Fe27112				х	х					
	Feb 19, 2020	Soil	N20-Fe27113			Х							
40 TARRO_PIT 2		Soil	N20-Fe27114			Х							
	Feb 19, 2020	Soil	N20-Fe27115		Х								
	Feb 19, 2020	Soil	N20-Fe27116		Х								
43 S16D_0.2-0.4	Feb 19, 2020	Soil	N20-Fe27117		Х								
	Feb 19, 2020	Soil	N20-Fe27118		Х								
	Feb 19, 2020	Soil	N20-Fe27119		Х								
	Feb 19, 2020	Soil	N20-Fe27120		Х								
47 S16E_0.4-0.6		Soil	N20-Fe27121		Х								

				Australia								New Zealand		
ABN – 50 005 085 521 web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com					Phone : +61 3 8564 5000 NATA # 1261				/ , Building F s Road ove West NSW 2066 ; +61 2 9900 8400 ; 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 76 Phone : 0800 856 450 IANZ # 1290	
Company Name: Address:	Nation Partne 306 / 50 Holt Surry Hills NSW 2010	,			Re	rder N eport hone: ax:	#:		703149 0405 821 580		Received: Due: Priority: Contact Name:	Feb 20, 2020 11:10 Feb 27, 2020 5 Day Luke Clements	AM	
Project Name: Project ID:	FRNSW TAR NP19039	RO									Eurofins Analytica	I Services Manager : U	rsula Long	
	CANCELLED	HOLD	HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)									
Melbourne Laborato														
Sydney Laboratory -				×		Х								
Brisbane Laboratory Perth Laboratory - N				X	X		X	X	•					
48 S16E_0.6-0.8		Soil	N20-Fe27122	,	x				1					
	Feb 19, 2020	Soil	N20-Fe27123		X				1					
	Feb 19, 2020	Soil	N20-Fe27124		X				1					
	Feb 19, 2020	Soil	N20-Fe27125		x									
	Feb 19, 2020	Soil	N20-Fe27126		x				1					
	Feb 19, 2020	Soil	N20-Fe27127		X				1					
	Feb 19, 2020	Soil	N20-Fe27128		X									
	Feb 19, 2020	Soil	N20-Fe27129				Х	Х]					
	Feb 19, 2020	Soil	N20-Fe27130				Х	Х]					
	Feb 19, 2020	Soil	N20-Fe27131		X									
	Feb 19, 2020	Soil	N20-Fe27132		X	1								
	Feb 19, 2020	Soil	N20-Fe27133	;	Х									
	Feb 19, 2020	Soil	N20-Fe27134		X				1					

1 OURO	fine	Austra	lia							New Zealand	
BN - 50 005 085 521	web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com	Dandeno Phone : · NATA #	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271			Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone: 0800 856 450 IANZ # 1290
Company Name: Address:	Address: 306 / 50 Holt Street, Surry Hills NSW 2010		Order No. Report #: Phone: Fax:		#:	703149 0405 821 580			Received: Due: Priority: Contact Name:	Feb 20, 2020 11:10 Feb 27, 2020 5 Day Luke Clements	АМ
Project Name: Project ID:	FRNSW TARRO NP19039								Eurofins Analytica	l Services Manager : U	rsula Long
	Sample Detail	CANCELLED	HOLD	HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)					
Melbourne Laborato	ry - NATA Site # 1254 & 14271										
Sydney Laboratory -	NATA Site # 18217			Х							
Brisbane Laboratory	- NATA Site # 20794	Х	X		X	Х					
Perth Laboratory - N	ATA Site # 23736										
Fest Counts		1	20	20	28	39					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

First Reported: Feb 27, 2020 Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Date Reported: Feb 28, 2020 ABN : 50 005 085 521 Telephone: +61 2 9900 8400

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	ug/kg	< 5		5	Pass	
Perfluoropentanoic acid (PFPeA)	ug/kg	< 5		5	Pass	
Perfluorohexanoic acid (PFHxA)	ug/kg	< 5		5	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/kg	< 5		5	Pass	
Perfluorooctanoic acid (PFOA)	ug/kg	< 5		5	Pass	
Perfluorononanoic acid (PFNA)	ug/kg	< 5		5	Pass	
Perfluorodecanoic acid (PFDA)	ug/kg	< 5		5	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/kg	< 5		5	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/kg	< 5		5	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/kg	< 5		5	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/kg	< 5		5	Pass	
Method Blank						
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)	ug/kg	< 5		5	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/kg	< 5		5	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/kg	< 5		5	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N- MeFOSE)	ug/kg	< 5		5	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/kg	< 5		5	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/kg	< 10		10	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/kg	< 10		10	Pass	
Method Blank						
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS)	ug/kg	< 5		5	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/kg	< 5		5	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/kg	< 5		5	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/kg	< 5		5	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	< 5		5	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	< 5		5	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/kg	< 5		5	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/kg	< 5		5	Pass	
Method Blank	uging				1 400	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/kg	< 5		5	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/kg	< 10		10	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/kg	< 5		5	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/kg	< 5		5	Pass	
LCS - % Recovery						
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	%	97		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	94		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	105		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	101		50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	108		50-150	Pass	
Perfluorononanoic acid (PFNA)	%	125		50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	100		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	113		50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	101		50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	113		50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	95		50-150	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery				1		1		
Perfluoroalkyl sulfonamido substa	nces							
Perfluorooctane sulfonamide (FOSA	A)		%	87		50-150	Pass	
N-methylperfluoro-1-octane sulfonar	mide (N-MeFOSA)		%	106		50-150	Pass	
N-ethylperfluoro-1-octane sulfonami	de (N-EtFOSA)		%	103		50-150	Pass	
2-(N-methylperfluoro-1-octane sulfor MeFOSE)	namido)-ethanol (N	1-	%	119		50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfona	mido)-ethanol (N-E	tFOSE)	%	89		50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoa		,	%	105		50-150	Pass	
N-methyl-perfluorooctanesulfonamic			%	110		50-150	Pass	
LCS - % Recovery		/		-				
Perfluoroalkyl sulfonic acids (PFS)	As)							
Perfluorobutanesulfonic acid (PFBS)			%	90		50-150	Pass	
Perfluorononanesulfonic acid (PFNS	/		%	117		50-150	Pass	
Perfluoropropanesulfonic acid (PFP	1		%	100		50-150	Pass	
Perfluoropentanesulfonic acid (PFPe	,		%	88		50-150	Pass	
Perfluorohexanesulfonic acid (PFHx	,		%	101		50-150	Pass	
Perfluoroheptanesulfonic acid (PFH			%	90		50-150	Pass	
Perfluorooctanesulfonic acid (PFOS	,		%	98		50-150	Pass	
Perfluorodecanesulfonic acid (PFDS	/		%	98		50-150	Pass	
LCS - % Recovery	- /		,.	1	P			
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)							
1H.1H.2H.2H-perfluorohexanesulfor			%	106		50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfon			%	98		50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfor			%	95		50-150	Pass	
1H.1H.2H.2H-perfluorododecanesul			%	91		50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Perfluoroalkyl carboxylic acids (PF	FCAs)			Result 1				
Perfluorobutanoic acid (PFBA)	N20-Fe27080	CP	%	98		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	N20-Fe27080	CP	%	89		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	N20-Fe27080	CP	%	107		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	N20-Fe27080	CP	%	106		50-150	Pass	
Perfluorooctanoic acid (PFOA)	N20-Fe27080	CP	%	100		50-150	Pass	
Perfluorononanoic acid (PFNA)	N20-Fe27080	CP	%	122		50-150	Pass	
Perfluorodecanoic acid (PFDA)	N20-Fe27080	CP	%	102		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	N20-Fe27080	СР	%	117		50-150	Pass	
Perfluorododecanoic acid		CP	%	111				
(PFDoDA) Perfluorotridecanoic acid (PFTrDA)	N20-Fe27080 N20-Fe27080	CP	%	111		50-150 50-150	Pass Pass	
Perfluorotetradecanoic acid				125		50-150	F 455	
(PFTeDA)	N20-Fe27080	CP	%	101		50-150	Pass	ļ
Spike - % Recovery								
Perfluoroalkyl sulfonamido substa	nces			Result 1				
Perfluorooctane sulfonamide (FOSA)	N20-Fe27080	СР	%	89		50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	N20-Fe27080	СР	%	107		50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	N20-Fe27080	СР	%	98		50-150	Pass	
	N20-Fe27080 N20-Fe27080	CP CP	%	98 74		50-150 50-150	Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
N-ethyl- perfluorooctanesulfonamidoacetic							
acid (N-EtFOSAA)	N20-Fe27080	CP	%	106	50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	N20-Fe27080	СР	%	106	50-150	Pass	
Spike - % Recovery	11201 027 000	01	70	100	00100	1 433	
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1			
Perfluorobutanesulfonic acid (PFBS)	N20-Fe27080	СР	%	89	50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	N20-Fe27080	СР	%	111	50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	N20-Fe27080	СР	%	98	50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	N20-Fe27080	СР	%	83	50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	N20-Fe27080	СР	%	95	50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	N20-Fe27080	CP	%	94	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	N20-Fe27080	CP	%	64	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	N20-Fe27080	CP	%	93	50-150	Pass	
Spike - % Recovery					 		
n:2 Fluorotelomer sulfonic acids (1:2 FTSAs)			Result 1			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	N20-Fe27080	СР	%	114	50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2							
FTSA) 1H.1H.2H.2H-	N20-Fe27080	СР	%	88	50-150	Pass	
perfluorodecanesulfonic acid (8:2 FTSA)	N20-Fe27080	СР	%	100	50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	N20-Fe27080	СР	%	89	50-150	Pass	
Spike - % Recovery							
Perfluoroalkyl carboxylic acids (Pf	FCAs)			Result 1			
Perfluorobutanoic acid (PFBA)	N20-Fe27109	CP	%	92	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	N20-Fe27109	CP	%	90	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	N20-Fe27109	CP	%	96	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	N20-Fe27109	CP	%	107	50-150	Pass	
Perfluorooctanoic acid (PFOA)	N20-Fe27109	CP	%	89	50-150	Pass	
Perfluorononanoic acid (PFNA)	N20-Fe27109	CP	%	100	50-150	Pass	
Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnDA)	N20-Fe27109	CP CP	%	101	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	N20-Fe27109 N20-Fe27109	СР	%	117	50-150 50-150	Pass Pass	
Perfluorotridecanoic acid (PFTrDA)	N20-Fe27109	CP	%	100	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	N20-Fe27109	СР	%	106	50-150	Pass	
Spike - % Recovery							
Perfluoroalkyl sulfonamido substa	nces			Result 1			
Perfluorooctane sulfonamide (FOSA)	N20-Fe27109	СР	%	81	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	N20-Fe27109	СР	%	107	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	N20-Fe27109	СР	%	66	50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	N20-Fe27109	СР	%	76		50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	N20-Fe27109	СР	%	63		50-150	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	N20-Fe27109	СР	%	96		50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	N20-Fe27109	СР	%	101		50-150	Pass	
Spike - % Recovery	11201021100	01	70	101		00 100	1 400	
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1				
Perfluorobutanesulfonic acid								
(PFBS) Perfluorononanesulfonic acid	N20-Fe27109	CP	%	89		50-150	Pass	
(PFNS)	N20-Fe27109	CP	%	109		50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	N20-Fe27109	СР	%	102		50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	N20-Fe27109	СР	%	92		50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	N20-Fe27109	СР	%	92		50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	N20-Fe27109	СР	%	124		50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	N20-Fe27109	СР	%	82		50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	N20-Fe27109	СР	%	90		50-150	Pass	
Spike - % Recovery								
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)			Result 1				
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	N20-Fe27109	СР	%	108		50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	N20-Fe27109	СР	%	109		50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	N20-Fe27109	СР	%	103		50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	N20-Fe27109	СР	%	90		50-150	Pass	
Spike - % Recovery								
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1				
Perfluorobutanoic acid (PFBA)	N20-Fe27127	CP	%	111		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	N20-Fe27127	CP	%	144		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	N20-Fe27127	CP	%	121		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	N20-Fe27127	CP	%	145		50-150	Pass	
Perfluorooctanoic acid (PFOA)	N20-Fe27127	CP	%	114		50-150	Pass	
Perfluorononanoic acid (PFNA)	N20-Fe27127	CP	%	142		50-150	Pass	
Perfluorodecanoic acid (PFDA)	N20-Fe27127	CP	%	120		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	N20-Fe27127	СР	%	128		50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	N20-Fe27127	СР	%	118		50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	N20-Fe27127	CP	%	135		50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	N20-Fe27127	СР	%	108		50-150	Pass	
Spike - % Recovery								
Perfluoroalkyl sulfonamido substa	nces			Result 1				
Perfluorooctane sulfonamide (FOSA)	N20-Fe27127	СР	%	106		50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	N20-Fe27127	СР	%	117			50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	N20-Fe27127	СР	%	110			50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	N20-Fe27127	СР	%	128			50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	N20-Fe27127	СР	%	105			50-150	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	N20-Fe27127	СР	%	114			50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	N20-Fe27127	СР	%	124			50-150	Pass	
Spike - % Recovery				1	r 1		T		
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1					
Perfluorobutanesulfonic acid (PFBS)	N20-Fe27127	СР	%	132			50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	N20-Fe27127	СР	%	121			50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	N20-Fe27127	СР	%	109			50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	N20-Fe27127	СР	%	134			50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	N20-Fe27127	СР	%	ND			50-150	Fail	Q05
Perfluoroheptanesulfonic acid (PFHpS)	N20-Fe27127	СР	%	142			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	N20-Fe27127	СР	%	ND			50-150	Fail	Q05
Perfluorodecanesulfonic acid (PFDS)	N20-Fe27127	СР	%	130			50-150	Pass	
Spike - % Recovery				1			T		
n:2 Fluorotelomer sulfonic acids (n	n:2 FTSAs)			Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	N20-Fe27127	СР	%	127			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	N20-Fe27127	СР	%	93			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	N20-Fe27127	СР	%	112			50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	N20-Fe27127	СР	%	105			50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					11				
Perfluoroalkyl carboxylic acids (Pl	CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	N20-Fe27079	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	N20-Fe27079	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	N20-Fe27079	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	N20-Fe27079	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	N20-Fe27079	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	N20-Fe27079	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	

Duplicate]
Perfluoroalkyl sulfonamido substa	ncos			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide	lices			TRESUIL T	Result 2	NI D			
(FOSA)	N20-Fe27079	CP	ug/kg	< 5	< 5	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	N20-Fe27079	СР	ug/kg	< 10	< 10	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	N20-Fe27079	СР	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate								_	
Perfluoroalkyl sulfonic acids (PFS)	As)		1	Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	N20-Fe27079	СР	ug/kg	150	140	8.0	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate				1			1		
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)		1	Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA) 1H.1H.2H.2H-	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
perfluorooctanesulfonic acid (6:2 FTSA)	N20-Fe27079	СР	ug/kg	< 10	< 10	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	N20-Fe27079	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate		01	~9/119			<u></u>	0070	1 435	
				Result 1	Result 2	RPD			
% Moisture	N20-Fe27085	СР	%	12	12	5.0	30%	Pass	
Duplicate									
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	N20-Fe27092	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	N20-Fe27092	CP	ug/kg	5.6	6.2	11	30%	Pass	
Perfluorohexanoic acid (PFHxA)	N20-Fe27092	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	N20-Fe27092	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	N20-Fe27092	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	N20-Fe27092	CP	ug/kg	6.5	7.1	8.0	30%	Pass	
Perfluorodecanoic acid (PFDA)	N20-Fe27092	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	N20-Fe27092	СР	ug/kg	< 5	< 5	<1	30%	Pass	

Duplicate									
Perfluoroalkyl carboxylic acids (Pl	FCAs)			Result 1	Result 2	RPD			
Perfluorododecanoic acid				_	_	_		_	
(PFDoDA)	N20-Fe27092	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid	N20-Fe27092	CP	ug/kg	< 5	< 5	<1	30%	Pass	
(PFTeDA)	N20-Fe27092	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonamido substa	nces		1	Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	N20-Fe27092	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-methylperfluoro-1-octane	N20-F627092		ug/kg	< 0	< 5	<1	30%	F d S S	
sulfonamide (N-MeFOSA)	N20-Fe27092	CP	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethylperfluoro-1-octane		0.0			-		0.00/		
sulfonamide (N-EtFOSA) 2-(N-methylperfluoro-1-octane	N20-Fe27092	CP	ug/kg	< 5	< 5	<1	30%	Pass	
sulfonamido)-ethanol (N-MeFOSE)	N20-Fe27092	CP	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane				_					
sulfonamido)-ethanol (N-EtFOSE)	N20-Fe27092	CP	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic									
acid (N-EtFOSAA)	N20-Fe27092	CP	ug/kg	< 10	< 10	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic									
acid (N-MeFOSAA)	N20-Fe27092	CP	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate				i			1		
Perfluoroalkyl sulfonic acids (PFS	As)		1	Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	N20-Fe27092	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanesulfonic acid		0.	ug/itg			~ ~ ~	0070	1 400	
(PFNS)	N20-Fe27092	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	N20-Fe27092	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanesulfonic acid	11201027032		ug/kg				5070	1 433	
(PFPeS)	N20-Fe27092	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	N20-Fe27092	СР	ug/kg	5.8	6.2	7.0	30%	Pass	
Perfluoroheptanesulfonic acid	1120-1 627032		ug/kg	5.0	0.2	7.0	5078	1 435	
(PFHpS)	N20-Fe27092	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	N20-Fe27092	СР	ug/kg	170	200	17	30%	Pass	
Perfluorodecanesulfonic acid	1120-1 627032		ug/kg	170	200	17	5078	1 435	
(PFDS)	N20-Fe27092	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate				1			1		
n:2 Fluorotelomer sulfonic acids (I	n:2 FTSAs)		1	Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2									
FTSA)	N20-Fe27092	CP	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2									
FTSA)	N20-Fe27092	CP	ug/kg	< 10	< 10	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2									
FTSA)	N20-Fe27092	СР	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H-									
perfluorododecanesulfonic acid (10:2 FTSA)	N20-Fe27092	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate							0070		
Perfluoroalkyl carboxylic acids (Pl	FCAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	N20-Fe27103	CP	ug/kg	8.3	9.8	16	30%	Pass	
Perfluoropentanoic acid (PFPeA)	N20-Fe27103	CP	ug/kg	46	56	19	30%	Pass	
Perfluorohexanoic acid (PFHxA)	N20-Fe27103	CP	ug/kg	50	58	15	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	N20-Fe27103	CP	ug/kg	24	24	1.0	30%	Pass	
Perfluorooctanoic acid (PFOA)	N20-Fe27103	CP	ug/kg	41	40	2.0	30%	Pass	
Perfluorononanoic acid (PFNA)	N20-Fe27103	CP	ug/kg	43	44	3.0	30%	Pass	

Duplicate									
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1	Result 2	RPD			
Perfluorodecanoic acid (PFDA)	N20-Fe27103	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	N20-Fe27103	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	N20-Fe27103	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	N20-Fe27103	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	N20-Fe27103	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	N20-Fe27103	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	N20-Fe27103	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	N20-Fe27103	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	N20-Fe27103	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	N20-Fe27103	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	N20-Fe27103	СР	ug/kg	< 10	< 10	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	N20-Fe27103	СР	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate							1		
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	N20-Fe27103	СР	ug/kg	11	11	5.0	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	N20-Fe27103	СР	ug/kg	13	13	3.0	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	N20-Fe27103	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	N20-Fe27103	СР	ug/kg	9.7	10	7.0	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	N20-Fe27103	СР	ug/kg	120	110	7.0	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	N20-Fe27103	СР	ug/kg	27	27	1.0	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	N20-Fe27103	СР	ug/kg	2900	3500	16	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	N20-Fe27103	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)			Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	N20-Fe27103	СР	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	N20-Fe27103	СР	ug/kg	< 10	< 10	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	N20-Fe27103	CP	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid									
(10:2 FTSA)	N20-Fe27103	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate				Recult 1	Booult 2				
% Moisture	N20-Fe27109	СР	%	Result 1 59	Result 2 62	RPD 5.0	30%	Pass	
	NZU-F8Z/109	UP	70	59	02	5.0	30%	F d 55	

Duplicate									
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	N20-Fe27112	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	N20-Fe27112	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	N20-Fe27112	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	N20-Fe27112	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	N20-Fe27112	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	N20-Fe27112	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	N20-Fe27112	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	N20-Fe27112	СР	ug/kg	< 10	< 10	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	N20-Fe27112	СР	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate				I			1		
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	N20-Fe27112	СР	ug/kg	47	49	4.0	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate				1			1		
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)		1	Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	N20-Fe27112	CP	ug/kg	< 10	< 10	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2									
FTSA)	N20-Fe27112	CP	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	N20-Fe27112	СР	ug/kg	< 5	< 5	<1	30%	Pass	

Duplicate									
				Result 1	Result 2	RPD			
% Moisture	N20-Fe27127	CP	%	23	22	2.0	30%	Pass	

Comments

This report has been revised (V2) to exclude samples N20-Fe27104 and N20-Fe27105 (migrated to report 704870).

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N09	Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.
N11	Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.
N15	Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation).
Q05	The matrix spike concentration is less than five times the background concentration in the sample - therefore the spike recovery cannot be determined

Authorised By

Ursula Long Sarah McCallion Analytical Services Manager Senior Analyst-PFAS (QLD)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

 * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequences incurred by the client, or any other person or company resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequences incurred by the client, or any other person or company resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be angeed to the samples a case shall exceed to the samples are constrained on the samples are constrain

🛟 eurofins

Environment Testing

Nation Partners 306 / 50 Holt Street, Surry Hills NSW 2010

Attention:

Luke Clements

Report Project name Project ID Received Date 703149-W-V2 FRNSW TARRO NP19039 Feb 20, 2020

Client Sample ID			RINS_2002202	SW07		
Sample Matrix			0 Water	SW07 Water	TARRO_PIT 1 Water	TARRO_PIT 2 Water
Eurofins Sample No.			N20-Fe27087	N20-Fe27088	N20-Fe27089	N20-Fe27090
•						
Date Sampled			Feb 20, 2020	Feb 19, 2020	Feb 19, 2020	Feb 19, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)		1				
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	0.06
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	0.03	0.08
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	0.05	0.14
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	0.02	^{N09} 0.04
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	^{N09} 0.03	^{N09} 0.04
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	101	60	78	68
13C5-PFPeA (surr.)	1	%	166	80	105	87
13C5-PFHxA (surr.)	1	%	120	70	84	74
13C4-PFHpA (surr.)	1	%	134	88	114	101
13C8-PFOA (surr.)	1	%	130	96	120	110
13C5-PFNA (surr.)	1	%	164	103	141	129
13C6-PFDA (surr.)	1	%	176	101	134	126
13C2-PFUnDA (surr.)	1	%	154	77	102	98
13C2-PFDoDA (surr.)	1	%	123	66	82	84
13C2-PFTeDA (surr.)	1	%	102	73	78	88
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	77	60	94	95
D3-N-MeFOSA (surr.)	1	%	51	41	55	54

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			RINS_2002202	SW07	TARRO_PIT 1	TARRO_PIT 2
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			N20-Fe27087	N20-Fe27088	N20-Fe27089	N20-Fe27090
Date Sampled			Feb 20, 2020	Feb 19, 2020	Feb 19, 2020	Feb 19, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonamido substances		-				
D5-N-EtFOSA (surr.)	1	%	57	43	51	52
D7-N-MeFOSE (surr.)	1	%	87	52	63	63
D9-N-EtFOSE (surr.)	1	%	100	57	64	68
D5-N-EtFOSAA (surr.)	1	%	72	39	44	50
D3-N-MeFOSAA (surr.)	1	%	76	40	48	52
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	0.02	0.02	0.10
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	0.01	0.01	0.05
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	^{N09} 0.01	^{N09} 0.06
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	^{N09} 0.03	^{N09} 0.07	^{N09} 0.34
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01	^{N09} 0.02	^{N09} 0.07	^{N09} 0.14
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	116	81	100	90
18O2-PFHxS (surr.)	1	%	108	77	100	91
13C8-PFOS (surr.)	1	%	115	73	103	97
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	177	107	127	120
13C2-6:2 FTSA (surr.)	1	%	155	166	188	191
13C2-8:2 FTSA (surr.)	1	%	135	79	111	112
13C2-10:2 FTSA (surr.)	1	%	157	78	104	103
PFASs Summations						
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	0.05	0.14	0.48
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	0.02	0.1	0.18
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01	0.05	0.17	0.52
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	0.07	0.29	0.94
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	< 0.1	0.31	1.05

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SW03 Water N20-Fe27095 Feb 19, 2020	SW04 Water N20-Fe27096 Feb 19, 2020	FIELD_BLANK _1902 Water N20-Fe27097 Feb 19, 2020	SW07A Water N20-Fe27098 Feb 19, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	0.02	0.02	< 0.01	0.02
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	0.02	0.02	< 0.01	0.03
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	^{N09} 0.01	< 0.01	< 0.01	^{N09} 0.01

Client Sample ID			SW03	SW04	FIELD_BLANK _1902	SW07A
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			N20-Fe27095	N20-Fe27096	N20-Fe27097	N20-Fe27098
Date Sampled			Feb 19, 2020	Feb 19, 2020	Feb 19, 2020	Feb 19, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)		0				
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	79	78	114	70
13C5-PFPeA (surr.)	1	%	107	102	176	85
13C5-PFHxA (surr.)	1	%	88	85	124	75
13C4-PFHpA (surr.)	1	%	105	99	143	93
13C8-PFOA (surr.)	1	%	114	108	145	107
13C5-PFNA (surr.)	1	%	131	128	171	123
13C6-PFDA (surr.)	1	%	122	126	190	131
13C2-PFUnDA (surr.)	1	%	94	95	166	109
13C2-PFDoDA (surr.)	1	%	79	79	130	96
13C2-PFTeDA (surr.)	1	%	76	79	89	74
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-	0.05		0.05	0.05	0.05	0.05
	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.) D3-N-MeFOSA (surr.)	<u>1</u> 1	%	85 42	82	<u>80</u> 51	89 48
		%		44	-	
D5-N-EtFOSA (surr.) D7-N-MeFOSE (surr.)	<u>1</u> 1	%	45 56	49 53	57 83	52 64
D9-N-EtFOSE (surr.)	1	%	60	60	95	74
D5-N-EtFOSA (surr.)	1	%	75	71	106	106
D3-N-MeFOSAA (surr.)	1	%	82	76	100	100
Perfluoroalkyl sulfonic acids (PFSAs)	1	70	02	10	124	103
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	0.01	0.01	< 0.01	0.01
Perfluorononanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPIS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanesulfonic acid (PFPeS) ^{N11}	0.01	ug/L	× 0.01	× 0.01	< 0.01	× 0.01 ^{N09} 0.07
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	× 0.01	× 0.01	< 0.01	× 0.01
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.)	1	ug/∟%	97	95	122	91
1802-PFHxS (surr.)	1	%	97	90	111	91
13C8-PFOS (surr.)	1	%	90	90	121	95

Client Sample ID Sample Matrix Eurofins Sample No.			SW03 Water N20-Fe27095	SW04 Water N20-Fe27096	FIELD_BLANK _1902 Water N20-Fe27097	SW07A Water N20-Fe27098
Date Sampled			Feb 19, 2020	Feb 19, 2020	Feb 19, 2020	Feb 19, 2020
Test/Reference	LOR	Unit				
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 $FTSA)^{N11}$	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	140	137	188	128
13C2-6:2 FTSA (surr.)	1	%	INT	195	168	INT
13C2-8:2 FTSA (surr.)	1	%	131	131	164	149
13C2-10:2 FTSA (surr.)	1	%	103	104	157	176
PFASs Summations						
Sum (PFHxS + PFOS)*	0.01	ug/L	0.14	0.14	< 0.01	0.12
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	0.09	0.08	< 0.01	0.06
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	0.15	0.14	< 0.01	0.13
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	0.2	0.19	< 0.05	0.19
Sum of PFASs (n=30)*	0.1	ug/L	0.2	0.19	< 0.1	0.19

Client Sample ID			MW03	MW02	MW01
Sample Matrix			Water	Water	Water
Eurofins Sample No.			N20-Fe27106	N20-Fe27107	N20-Fe27108
Date Sampled			Feb 20, 2020	Feb 20, 2020	Feb 20, 2020
Test/Reference	LOR	Unit			
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	0.06	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	0.10	< 0.01
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	0.11	< 0.01
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	^{N09} 0.02	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	^{N09} 0.01	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	118	80	69
13C5-PFPeA (surr.)	1	%	176	122	128
13C5-PFHxA (surr.)	1	%	126	101	91
13C4-PFHpA (surr.)	1	%	145	136	109
13C8-PFOA (surr.)	1	%	151	131	111
13C5-PFNA (surr.)	1	%	150	149	119
13C6-PFDA (surr.)	1	%	134	137	113
13C2-PFUnDA (surr.)	1	%	102	128	108
13C2-PFDoDA (surr.)	1	%	94	116	105
13C2-PFTeDA (surr.)	1	%	31	55	52

Client Sample ID Sample Matrix			MW03 Water	MW02 Water	MW01 Water
Eurofins Sample No.			N20-Fe27106	N20-Fe27107	N20-Fe27108
•					
Date Sampled			Feb 20, 2020	Feb 20, 2020	Feb 20, 2020
Test/Reference	LOR	Unit			
Perfluoroalkyl sulfonamido substances					
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	72	95	78
D3-N-MeFOSA (surr.)	1	%	38	109	91
D5-N-EtFOSA (surr.)	1	%	32	114	96
D7-N-MeFOSE (surr.)	1	%	55	93	81
D9-N-EtFOSE (surr.)	1	%	55	104	94
D5-N-EtFOSAA (surr.)	1	%	10	38	41
D3-N-MeFOSAA (surr.)	1	%	INT	35	43
Perfluoroalkyl sulfonic acids (PFSAs)					
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	0.06	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	0.02	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01	^{N09} 0.04	< 0.01
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	^{N09} 0.01	^{N09} 0.17	< 0.01
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	^{N09} 0.02	^{N09} 0.09	< 0.01
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	121	124	94
18O2-PFHxS (surr.)	1	%	124	126	111
13C8-PFOS (surr.)	1	%	114	121	99
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		1			
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	104	118	104
13C2-6:2 FTSA (surr.)	1	%	98	91	78
13C2-8:2 FTSA (surr.)	1	%	86	69	61
13C2-10:2 FTSA (surr.)	1	%	84	80	67
PFASs Summations					
Sum (PFHxS + PFOS)*	0.01	ug/L	0.03	0.26	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	0.02	0.1	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	0.03	0.27	< 0.01
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	0.62	< 0.05
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	0.68	< 0.1

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Feb 21, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Feb 21, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Feb 21, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Feb 21, 2020	14 Days

- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)

•	01110	fine				Austra	lia							New Zealand	
ABN - 50 005 085 521 web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com							Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271			Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7/ Phone : 0800 856 450 IANZ # 1290
	Company Name: Nation Partners Pty Ltd Address: 306 / 50 Holt Street, Surry Hills NSW 2010				Re Pl	rder N eport none: ax:	#:		703149 0405 821 580		Received: Due: Priority: Contact Name:	Feb 20, 2020 11:10 Feb 27, 2020 5 Day Luke Clements	АМ		
Project Name:FRNSW TARROProject ID:NP19039													Eurofins Analytica	l Services Manager : U	Irsula Long
		Sa	mple Detail			CANCELLED	HOLD	HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)					
	ourne Laborato			271		_					-				
	ney Laboratory							Х		_	-				
	bane Laborator	•				Х	X	<u> </u>	X	X	4				
	h Laboratory - N	ATA Site # 237	36			_		<u> </u>			4				
Exte No	rnal Laboratory Sample ID	Sample Date	Sampling	Matrix	LAB ID						-				
	FP3_0.0-0.2	Feb 20, 2020	Time	Soil	N20-Fe27072				x	x	-				
2	FP4_0.0-0.2	Feb 20, 2020		Soil	N20-Fe27073	1			X	X	1				
;	FP5_0.0-0.2	Feb 20, 2020		Soil	N20-Fe27074	1			X	X	1				
, 1	FP6_0.0-0.2	Feb 20, 2020		Soil	N20-Fe27075	1			x	x	1				
;	FP7_0.0-0.2	Feb 20, 2020		Soil	N20-Fe27076	1			x	x	1				
, }	FP8_0.0-0.2	Feb 20, 2020		Soil	N20-Fe27077	1			X	X	1				
-		Feb 20, 2020		Soil	N20-Fe27078	1			X	X	1				
7	IFP9 0.0-0.2			1			+	1	-	-	1				
	FP9_0.0-0.2 FP10_0.0-0.2			Soil	N20-Fe27079				X	X					
7 8 9	FP9_0.0-0.2 FP10_0.0-0.2 FP11_0.0-0.2	Feb 20, 2020 Feb 20, 2020		Soil Soil	N20-Fe27079 N20-Fe27080				X X	X X					

🔅 eurofins			Austral	lia							New Zealand		
ABN - 50 005 085 521	web : www.eurofins	Environment T	esting	Melbourne 6 Monterey Road Dandenong South VIC 31 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271			175 0	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW Phone : +61 2 9900 84 NATA # 1261 Site # 18		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7679 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Nation Partne 306 / 50 Holt Surry Hills NSW 2010	-			Re Pl	rder N eport none: ax:	#:		703149 0405 821 580		Received: Due: Priority: Contact Name:	Feb 20, 2020 11:10 Feb 27, 2020 5 Day Luke Clements	АМ
Project Name: Project ID:	FRNSW TAR NP19039	RO									Eurofins Analytica	I Services Manager : U	Irsula Long
	San	nple Detail		CANCELLED	HOLD	HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)					
Melbourne Laborato				_					_				
Sydney Laboratory -						Х			_				
Brisbane Laboratory				X	X		X	X	_				
Perth Laboratory - N			- I	_					_				
11 FP13_0.0-0.2		Soil	N20-Fe27082				X	X	_				
12 FP14_0.0-0.2		Soil	N20-Fe27083				X	X	4				
	Feb 20, 2020	Soil	N20-Fe27084			<u> </u>	X	X	4				
	Feb 20, 2020	Soil	N20-Fe27085				X	X	4				
	Feb 20, 2020	Soil	N20-Fe27086				Х	Х	4				
16 RINS_200220 20	Feb 20, 2020	Water	N20-Fe27087					X					
	Feb 19, 2020	Water	N20-Fe27088					X	1				
18 TARRO_PIT 1		Water	N20-Fe27089					X	1				
19 TARRO_PIT 2		Water	N20-Fe27090					X	1				
	Feb 19, 2020	Soil	N20-Fe27091	x	1				1				
	Feb 19, 2020	Soil	N20-Fe27092	+	1		X	Х	1				
22 S16C_0.4-0.6		Soil	N20-Fe27093		1		X	X	1				
22 0100_0.4-0.0	1 80 19, 2020	10011	11120-1 62/093		1	1	^	^					

••• ou	rofine			Austral	lia							New Zealand		
ABN - 50 005 085 52	rofins	Environment	Testing	Dandeno Phone : - NATA # ⁻	rey Road ong Sout +61 3 85	h VIC 3 64 5000	175 0	16 Mars Lane Co Phone :	Building F	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767: Phone : 0800 856 450 IANZ # 1290	
Company Na Address:	me: Nation Part 306 / 50 Ho Surry Hills NSW 2010				Re	der N eport ione: x:	#:		03149 405 821 580		Received: Due: Priority: Contact Name:	Feb 20, 2020 11:10 Feb 27, 2020 5 Day Luke Clements	АМ	
Project Name Project ID:	e: FRNSW TA NP19039	ARRO									Eurofins Analytica	I Services Manager : U	rsula Long	
	s	ample Detail		CANCELLED	HOLD	HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)						
	ooratory - NATA Sit													
Sydney Labora	atory - NATA Site #	18217				Х								
	oratory - NATA Site			Х	X		X	X						
	ory - NATA Site # 23													
23 SW03	Feb 19, 2020		N20-Fe27095					X						
24 SW04 25 FIELD_BL 1902	Feb 19, 2020 _ANK Feb 19, 2020		N20-Fe27096 N20-Fe27097					x x						
26 SW07A	Feb 19, 2020	Water	N20-Fe27098					х						
27 S16A_0.2			N20-Fe27099		1		х	х						
28 S16A_0.4			N20-Fe27100				х	х						
29 S16B_0.2			N20-Fe27101				х	х						
30 S16B_0.4			N20-Fe27102				х	Х						
31 QC4	Feb 19, 2020		N20-Fe27103				Х	Х						
32 MW03	Feb 20, 2020		N20-Fe27106					Х						
33 MW02	Feb 20, 2020	Water	N20-Fe27107					Х						
34 MW01	Feb 20, 2020	Water	N20-Fe27108					Х						

🔅 eurofins				Austra	lia							New Zealand	
ABN - 50 005 085 521	Environment Testing			Melbourne 6 Monterey Road Dandenong South 1 Phone : +61 3 8564 NATA # 1261 Site # 1254 & 1427			8175 0	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Nation Partne 306 / 50 Holt S Surry Hills NSW 2010				R Pl	rder I eport hone: ax:	#:		703149 0405 821 580		Received: Due: Priority: Contact Name:	Feb 20, 2020 11:10 Feb 27, 2020 5 Day Luke Clements	AM
Project Name: Project ID:	FRNSW TARI NP19039	RO									Eurofins Analytica	l Services Manager : U	Irsula Long
		ıple Detail		CANCELLED	HOLD	HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)					
Melbourne Laborator	•					x			-				
Sydney Laboratory - Brisbane Laboratory				X	x	^	x	x	-				
Perth Laboratory - N				<u>^</u>					-				
35 TARRO_PIT 1		Soil	N20-Fe27109				x	x	-				
36 TARRO_PIT 2		Soil	N20-Fe27110	_			X	X					
	Feb 20, 2020	Soil	N20-Fe27111				X	Х					
	Feb 20, 2020	Soil	N20-Fe27112				X	Х					
39 TARRO_PIT 1	Feb 19, 2020	Soil	N20-Fe27113			Х]				
40 TARRO_PIT 2	Feb 19, 2020	Soil	N20-Fe27114			х							
41 S16B_0.6-0.8	Feb 19, 2020	Soil	N20-Fe27115		Х								
42 S16C_0.6-0.8	Feb 19, 2020	Soil	N20-Fe27116		Х								
43 S16D_0.2-0.4	Feb 19, 2020	Soil	N20-Fe27117		Х								
44 S16D_0.4-0.6	Feb 19, 2020	Soil	N20-Fe27118		Х								
45 S16D_0.6-0.8	Feb 19, 2020	Soil	N20-Fe27119		Х								
46 S16E_0.2-0.4	Feb 19, 2020	Soil	N20-Fe27120		Х								
47 S16E_0.4-0.6	Feb 19, 2020	Soil	N20-Fe27121		Х								

🛟 eurofins			Australia								New Zealand		
ABN - 50 005 085 521	web : www.eurofin	Environment • s.com.au e.mail : EnviroSales@		Melbour 6 Monte Dandeno Phone : NATA # Site # 12	rey Road ong Sout +61 3 85 1261	th VIC 3 564 500	8175 0	16 Mars Lane C Phone	, Building F	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Nation Partne 306 / 50 Holt Surry Hills NSW 2010	,			R	rder N eport hone: ax:	#:		703149 0405 821 580		Received: Due: Priority: Contact Name:	Feb 20, 2020 11:10 Feb 27, 2020 5 Day Luke Clements	AM
Project Name: Project ID:	FRNSW TAF NP19039	RO									Eurofins Analytica	l Services Manager : U	rsula Long
		mple Detail		CANCELLED	HOLD	HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)					
Melbourne Laborato									-				
Sydney Laboratory -						Х			-				
Brisbane Laboratory				X	X		X	X	-				
Perth Laboratory - N									-				
48 S16E_0.6-0.8 49 S16F_0.2-0.4		Soil Soil	N20-Fe27122		X X			+	{				
	Feb 19, 2020 Feb 19, 2020	Soil	N20-Fe27123 N20-Fe27124		X				1				
	Feb 19, 2020 Feb 19, 2020	Soil	N20-Fe27124		x				1				
	Feb 19, 2020	Soil	N20-Fe27120		x				1				
	Feb 19, 2020	Soil	N20-Fe27127		X		1		1				
	Feb 19, 2020	Soil	N20-Fe27128		X				1				
	Feb 19, 2020	Soil	N20-Fe27129		+		x	x	1				
	Feb 19, 2020	Soil	N20-Fe27130		1		X	X	1				
	Feb 19, 2020	Soil	N20-Fe2713		x				1				
	Feb 19, 2020	Soil	N20-Fe27132		X		1		1				
	Feb 19, 2020	Soil	N20-Fe27133		x		1		1				
					1								

1 OURO	fine	Austra	lia							New Zealand	
BN - 50 005 085 521	web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com	Melbour 6 Monter Dandenc Phone : NATA # Site # 12	rey Roa ong Sou +61 3 8 1261	th VIC 3 564 500	8175 0	16 Mars Lane Co Phone :	Building F	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone: 0800 856 450 IANZ # 1290
Company Name: Address:	Nation Partners Pty Ltd 306 / 50 Holt Street, Surry Hills NSW 2010		R P	rder I eport hone: ax:	#:		03149 405 821 580		Received: Due: Priority: Contact Name:	Feb 20, 2020 11:10 Feb 27, 2020 5 Day Luke Clements	АМ
Project Name: Project ID:	FRNSW TARRO NP19039								Eurofins Analytica	l Services Manager : U	rsula Long
	Sample Detail	CANCELLED	HOLD	HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)					
Melbourne Laborato	ry - NATA Site # 1254 & 14271										
Sydney Laboratory -	NATA Site # 18217			Х							
Brisbane Laboratory	- NATA Site # 20794	Х	X		X	Х					
Perth Laboratory - N	ATA Site # 23736										
Fest Counts		1	20	20	28	39					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

First Reported: Feb 27, 2020 Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Date Reported: Feb 28, 2020 ABN : 50 005 085 521 Telephone: +61 2 9900 8400

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	ug/L	< 0.05	0.05	Pass	
Perfluoropentanoic acid (PFPeA)	ug/L	< 0.01	0.01	Pass	
Perfluorohexanoic acid (PFHxA)	ug/L	< 0.01	0.01	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/L	< 0.01	0.01	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.01	0.01	Pass	
Perfluorononanoic acid (PFNA)	ug/L	< 0.01	0.01	Pass	
Perfluorodecanoic acid (PFDA)	ug/L	< 0.01	0.01	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/L	< 0.01	0.01	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/L	< 0.01	0.01	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/L	< 0.01	0.01	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/L	< 0.01	0.01	Pass	
Method Blank	· · · · ·			•	
Perfluoroalkyl sulfonamido substances					
Perfluorooctane sulfonamide (FOSA)	ug/L	< 0.05	0.05	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/L	< 0.05	0.05	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/L	< 0.05	0.05	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N- MeFOSE)	ug/L	< 0.05	0.05	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/L	< 0.05	0.05	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/L	< 0.05	0.05	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/L	< 0.05	0.05	Pass	
Method Blank	<u> </u>		0.00	1 400	
Perfluoroalkyl sulfonic acids (PFSAs)					
Perfluorobutanesulfonic acid (PFBS)	ug/L	< 0.01	0.01	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/L	< 0.01	0.01	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/L	< 0.01	0.01	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/L	< 0.01	0.01	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/L	< 0.01	0.01	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/L	< 0.01	0.01	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/L	< 0.01	0.01	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/L	< 0.01	0.01	Pass	
Method Blank	ug/L	< 0.01	0.01	1 455	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		1			
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ua/I	< 0.01	0.01	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/L ug/L	< 0.01	0.01	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/L ug/L	< 0.03	0.03	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (8.2 FTSA)		< 0.01	0.01	Pass	
	ug/L	<u> </u>	0.01	газэ	
LCS - % Recovery Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	%	105	50 150	Deee	
		105	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	107	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	116	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	107	50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	112	50-150	Pass	
Perfluorononanoic acid (PFNA)	%	115	50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	80	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	107	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	119	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	78	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	107	50-150	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery						-		
Perfluoroalkyl sulfonamido substa	nces							
Perfluorooctane sulfonamide (FOSA	.)		%	124		50-150	Pass	
N-methylperfluoro-1-octane sulfonar	nide (N-MeFOSA)		%	97		50-150	Pass	
N-ethylperfluoro-1-octane sulfonami	de (N-EtFOSA)		%	102		50-150	Pass	
2-(N-methylperfluoro-1-octane sulfor	namido)-ethanol (N	-						
MeFOSE)			%	91		50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfona	/ /	,	%	87		50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoa	1	,	%	92		50-150	Pass	
N-methyl-perfluorooctanesulfonamid	loacetic acid (N-Me	FOSAA)	%	92		50-150	Pass	
LCS - % Recovery				1		1		
Perfluoroalkyl sulfonic acids (PFS)							_	
Perfluorobutanesulfonic acid (PFBS)			%	90		50-150	Pass	
Perfluorononanesulfonic acid (PFNS	/		%	106		50-150	Pass	
Perfluoropropanesulfonic acid (PFPr	/		%	109		50-150	Pass	
Perfluoropentanesulfonic acid (PFPe			%	89		50-150	Pass	
Perfluorohexanesulfonic acid (PFHx	/		%	105		50-150	Pass	
Perfluoroheptanesulfonic acid (PFHp	1		%	89		50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	/		%	107		50-150	Pass	
Perfluorodecanesulfonic acid (PFDS	5)		%	95		50-150	Pass	
LCS - % Recovery				1		1		
n:2 Fluorotelomer sulfonic acids (r								
1H.1H.2H.2H-perfluorohexanesulfor	nic acid (4:2 FTSA)		%	121		50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfoni			%	101		50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfor	nic acid (8:2 FTSA)		%	111		50-150	Pass	
1H.1H.2H.2H-perfluorododecanesul	fonic acid (10:2 FT	SA)	%	93		50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	1	T	1	
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1				
Perfluorobutanoic acid (PFBA)	N20-Fe27089	CP	%	108		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	N20-Fe27089	CP	%	97		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	N20-Fe27089	CP	%	137		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	N20-Fe27089	CP	%	108		50-150	Pass	
Perfluorooctanoic acid (PFOA)	N20-Fe27089	CP	%	107		50-150	Pass	
Perfluorononanoic acid (PFNA)	N20-Fe27089	CP	%	126		50-150	Pass	
Perfluorodecanoic acid (PFDA)	N20-Fe27089	CP	%	105		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	N20-Fe27089	СР	%	129		50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	N20-Fe27089	СР	%	146		50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	N20-Fe27089	CP	%	114		50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	N20-Fe27089	СР	%	139		50-150	Pass	
Spike - % Recovery					1			
Perfluoroalkyl sulfonamido substa	nces			Result 1				
Perfluorooctane sulfonamide (FOSA)	N20-Fe27089	СР	%	105		50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	N20-Fe27089	СР	%	111		50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	N20-Fe27089	СР	%	114		50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	N20-Fe27089	СР	%	100		50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	N20-Fe27089	СР	%	111		50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
N-ethyl- perfuorooctanesulfonamidoacetic		0.5	0/	404	50.450	6	
acid (N-EtFOSAA) N-methyl- perfluorooctanesulfonamidoacetic	N20-Fe27089	CP	%	121	50-150	Pass	
acid (N-MeFOSAA)	N20-Fe27089	СР	%	114	50-150	Pass	
Spike - % Recovery							
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1			
Perfluorobutanesulfonic acid (PFBS)	N20-Fe27089	СР	%	86	50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	N20-Fe27089	СР	%	118	50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	N20-Fe27089	СР	%	127	50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	N20-Fe27089	СР	%	88	50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	N20-Fe27089	СР	%	132	50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	N20-Fe27089	СР	%	102	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	N20-Fe27089	СР	%	125	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	N20-Fe27089	СР	%	110	50-150	Pass	
Spike - % Recovery				D 14		[
n:2 Fluorotelomer sulfonic acids (1:2 FISAS)			Result 1			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	N20-Fe27089	СР	%	117	50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	N20-Fe27089	СР	%	138	50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	N20-Fe27089	СР	%	114	50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	N20-Fe27089	СР	%	93	50-150	Pass	
Spike - % Recovery	1120-1 627003		70	35	30-130	1 835	
Perfluoroalkyl carboxylic acids (Pf	CAs)			Result 1			
Perfluorobutanoic acid (PFBA)	N20-Fe27106	СР	%	98	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	N20-Fe27106	СР	%	85	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	N20-Fe27106	CP	%	106	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	N20-Fe27106	CP	%	104	50-150	Pass	
Perfluorooctanoic acid (PFOA)	N20-Fe27106	CP	%	93	50-150	Pass	
Perfluorononanoic acid (PFNA)	N20-Fe27106	CP	%	110	50-150	Pass	
Perfluorodecanoic acid (PFDA)	N20-Fe27106	CP	%	97	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	N20-Fe27106	СР	%	100	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	N20-Fe27106	СР	%	113	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid	N20-Fe27106	CP	%	115	50-150	Pass	
(PFTeDA)	N20-Fe27106	CP	%	118	50-150	Pass	
Spike - % Recovery	2005			Pooult 4			
Perfluoroalkyl sulfonamido substa Perfluorooctane sulfonamide (FOSA)	N20-Fe27106	СР	%	Result 1	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	N20-Fe27106	СР	%	91	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	N20-Fe27106	CP	%	84	50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	N20-Fe27106	СР	%	87			50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	N20-Fe27106	СР	%	85			50-150	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	N20-Fe27106	СР	%	96			50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	N20-Fe27106	СР	%	84			50-150	Pass	
Spike - % Recovery				1			I		
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1					
Perfluorobutanesulfonic acid (PFBS)	N20-Fe27106	СР	%	83			50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	N20-Fe27106	СР	%	88			50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	N20-Fe27106	СР	%	101			50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	N20-Fe27106	СР	%	80			50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	N20-Fe27106	СР	%	106			50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	N20-Fe27106	СР	%	98			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	N20-Fe27106	СР	%	76			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	N20-Fe27106	СР	%	82			50-150	Pass	
Spike - % Recovery				T			T		
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	N20-Fe27106	СР	%	100			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	N20-Fe27106	СР	%	104			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	N20-Fe27106	СР	%	96			50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid									
(10:2 FTSA) Test	N20-Fe27106		% Units	75 Result 1			50-150 Acceptance	Pass Pass	Qualifying
Duplicate	•	Source					Limits	Limits	Code
Perfluoroalkyl carboxylic acids (Pl	-CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	N20-Fe27087	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	N20-Fe27087	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	N20-Fe27087	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	N20-Fe27087	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	N20-Fe27087	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	N20-Fe27087	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	N20-Fe27087	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	N20-Fe27087	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	N20-Fe27087	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	N20-Fe27087	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	N20-Fe27087	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Duplicate									
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	N20-Fe27087	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	N20-Fe27087	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	N20-Fe27087	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	N20-Fe27087	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	N20-Fe27087	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	N20-Fe27087	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	N20-Fe27087	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate				1	1			1	
Perfluoroalkyl sulfonic acids (PFS)	As)		1	Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	N20-Fe27087	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	N20-Fe27087	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	N20-Fe27087	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS) Perfluorohexanesulfonic acid	N20-Fe27087	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
(PFHxS) Perfluoroheptanesulfonic acid	N20-Fe27087	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
(PFHpS) Perfluorooctanesulfonic acid	N20-Fe27087	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
(PFOS) Perfluorodecanesulfonic acid	N20-Fe27087	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
(PFDS) Duplicate	N20-Fe27087	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
n:2 Fluorotelomer sulfonic acids (r	·2 FTSAs)			Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	N20-Fe27087	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	N20-Fe27087	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	N20-Fe27087	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	N20-Fe27087	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Perfluoroalkyl carboxylic acids (PF	CAs)		1	Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	N20-Fe27088	CP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	N20-Fe27088	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	N20-Fe27088	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	N20-Fe27088	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	N20-Fe27088	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	N20-Fe27088	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnDA)	N20-Fe27088	CP CP	ug/L	< 0.01	< 0.01	<u><1</u> <1	<u> </u>	Pass Pass	
Perfluorododecanoic acid		CP CP	ug/L						
(PFDoDA) Perfluorotridecanoic acid (PFTrDA)	N20-Fe27088 N20-Fe27088	CP CP	ug/L ug/L	< 0.01 < 0.01	< 0.01 < 0.01	<u><1</u> <1	30% 30%	Pass Pass	
Perfluorotetradecanoic acid (PFTeDA)	N20-Fe27088	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
	11201 62/000	01	uy/L		< 0.01		5070	1 033	

Duplicate									
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	N20-Fe27088	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	N20-Fe27088	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	N20-Fe27088	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	N20-Fe27088	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	N20-Fe27088	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	N20-Fe27088	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	N20-Fe27088	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate				1	1				
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	N20-Fe27088	CP	ug/L	0.02	0.02	2.0	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	N20-Fe27088	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	N20-Fe27088	СР	ug/L	0.01	0.01	4.0	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	N20-Fe27088	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	N20-Fe27088	СР	ug/L	0.03	0.03	3.0	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS) Perfluorooctanesulfonic acid	N20-Fe27088	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
(PFOS) Perfluorodecanesulfonic acid	N20-Fe27088	СР	ug/L	0.02	0.02	2.0	30%	Pass	
(PFDS) Duplicate	N20-Fe27088	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
n:2 Fluorotelomer sulfonic acids (r	:2 FTSAs)			Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	N20-Fe27088	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	N20-Fe27088	CP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	N20-Fe27088	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	N20-Fe27088	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate				T	1				
Perfluoroalkyl carboxylic acids (PF				Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	N20-Fe27107	CP	ug/L	0.06	0.07	19	30%	Pass	
Perfluoropentanoic acid (PFPeA)	N20-Fe27107	CP	ug/L	0.10	0.12	15	30%	Pass	
Perfluorohexanoic acid (PFHxA)	N20-Fe27107	CP	ug/L	0.11	0.12	12	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	N20-Fe27107	CP	ug/L	0.02	0.02	8.0	30%	Pass	
Perfluorooctanoic acid (PFOA)	N20-Fe27107	CP CP	ug/L	0.01	0.01	14	30%	Pass	
Perfluorononanoic acid (PFNA)	N20-Fe27107	CP CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnDA)	N20-Fe27107 N20-Fe27107	CP CP	ug/L ug/L	< 0.01	< 0.01	<u><1</u> <1	<u> </u>	Pass Pass	
(PFONDA) Perfluorododecanoic acid (PFDoDA)	N20-Fe27107	CP CP	ug/L ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	N20-Fe27107	CP CP	ug/L ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	N20-Fe27107	CP CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
	11201021101	0	~y/L	1 20.01	\$ 0.01	~ 1	0070	1 435	

Duplicate									
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	N20-Fe27107	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	N20-Fe27107	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	N20-Fe27107	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	N20-Fe27107	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	N20-Fe27107	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	N20-Fe27107	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	N20-Fe27107	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate								_	
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	N20-Fe27107	СР	ug/L	0.06	0.06	2.0	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	N20-Fe27107	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	N20-Fe27107	СР	ug/L	0.02	0.02	3.0	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	N20-Fe27107	СР	ug/L	0.04	0.05	16	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	N20-Fe27107	СР	ug/L	0.17	0.19	11	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	N20-Fe27107	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	N20-Fe27107	СР	ug/L	0.09	0.10	9.0	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	N20-Fe27107	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate				1	1				
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)			Result 1	Result 2	RPD		+	
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	N20-Fe27107	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	N20-Fe27107	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	N20-Fe27107	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	N20-Fe27107	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Comments

This report has been revised (V2) to exclude samples N20-Fe27104 and N20-Fe27105 (migrated to report 704870).

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident Y	Yes
Sample correctly preserved Y	Yes
Appropriate sample containers have been used Y	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime Y	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

 Code
 Description

 N09
 Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.

 N11
 Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogue allow identification and recovery correction of the concentration of the associated native PFAS compounds.

 N15
 Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation).

Authorised By

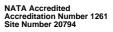
Ursula Long Sarah McCallion Analytical Services Manager Senior Analyst-PFAS (QLD)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.


Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this included to be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and to be produced accept in till and related only to the terms tested.

Nation Partners 306 / 50 Holt Street, Surry Hills **NSW 2010**

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Luke Clements

Report Project name Project ID **Received Date** 708095-S-V2 **FRNSW TARRO** NP 19039 Mar 16, 2020

Client Sample ID			SD10
Sample Matrix			Soil
Eurofins Sample No.			B20-Ma23967
•			
Date Sampled			Mar 16, 2020
Test/Reference	LOR	Unit	
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	7.6
Total Organic Carbon	0.1	%	1.9
% Moisture	1	%	23
Perfluoroalkyl carboxylic acids (PFCAs)			
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5
13C4-PFBA (surr.)	1	%	88
13C5-PFPeA (surr.)	1	%	99
13C5-PFHxA (surr.)	1	%	105
13C4-PFHpA (surr.)	1	%	95
13C8-PFOA (surr.)	1	%	108
13C5-PFNA (surr.)	1	%	95
13C6-PFDA (surr.)	1	%	121
13C2-PFUnDA (surr.)	1	%	103
13C2-PFDoDA (surr.)	1	%	100
13C2-PFTeDA (surr.)	1	%	116
Perfluoroalkyl sulfonamido substances			
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	5	ug/kg	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10

Client Sample ID			SD10
Sample Matrix			Soil
Eurofins Sample No.			B20-Ma23967
Date Sampled			Mar 16, 2020
Test/Reference	LOR	Unit	11111 10, 2020
Perfluoroalkyl sulfonamido substances	LUK	Unit	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10
13C8-FOSA (surr.)	1	%	83
D3-N-MeFOSA (surr.)	1	%	85
D5-N-EtFOSA (surr.)	1	%	84
D7-N-MeFOSE (surr.)	1	%	43
D9-N-EtFOSE (surr.)	1	%	43
D5-N-EtFOSAA (surr.)	1	%	129
D3-N-MeFOSAA (surr.)	1	%	116
Perfluoroalkyl sulfonic acids (PFSAs)			
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	6.2
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5
13C3-PFBS (surr.)	1	%	98
18O2-PFHxS (surr.)	1	%	99
13C8-PFOS (surr.)	1	%	101
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	5	ug/kg	< 5
13C2-4:2 FTSA (surr.)	1	%	117
13C2-6:2 FTSA (surr.)	1	%	117
13C2-8:2 FTSA (surr.)	1	%	141
13C2-10:2 FTSA (surr.)	1	%	173
PFASs Summations			
Sum (PFHxS + PFOS)*	5	ug/kg	6.2
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	6.2
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	6.2
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Mar 18, 2020	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Total Organic Carbon	Melbourne	Mar 18, 2020	28 Days
- Method: LTM-INO-4060 Total Organic Carbon in water and soil			
% Moisture	Brisbane	Mar 19, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Mar 17, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Mar 17, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Mar 18, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Mar 18, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

						Austra	lia				New Zealand			
Environment Testing				Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271			3175)0	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: - 461 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767: Phone : 0800 856 450 IANZ # 1290		
	mpany Name: dress:	Nation Partn 306 / 50 Holt Surry Hills NSW 2010	•				R P	rder I eport hone: ax:	#:	708095 0405 821 580		Received: Due: Priority: Contact Name:	Mar 16, 2020 1:15 F Mar 19, 2020 3 Day Luke Clements	PM
	Project Name: FRNSW TARRO Project ID: NP 19039										Eurofins Analytical	Services Manager : U	rsula Long	
Sample Detail				pH (1:5 Aqueous extract at 25°C as rec.)	Total Organic Carbon	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)							
	ourne Laborato	-		271		X	X			_				
	ney Laboratory bane Laboratory					-		x	x	-				
	h Laboratory - N	-								-				
	rnal Laboratory									1				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	SW10	Mar 16, 2020		Water	B20-Ma23966				Х]				
2	SD10	Mar 16, 2020		Soil	B20-Ma23967	Х	Х	х	х					
Tost	Counts					1	1	1	2					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			• • • •			
Total Organic Carbon	%	< 0.1		0.1	Pass	
Method Blank						
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	ug/kg	< 5		5	Pass	
Perfluoropentanoic acid (PFPeA)	ug/kg	< 5		5	Pass	
Perfluorohexanoic acid (PFHxA)	ug/kg	< 5		5	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/kg	< 5		5	Pass	
Perfluorooctanoic acid (PFOA)	ug/kg	< 5		5	Pass	
Perfluorononanoic acid (PFNA)	ug/kg	< 5		5	Pass	
Perfluorodecanoic acid (PFDA)	ug/kg	< 5		5	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/kg	< 5		5	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/kg	< 5		5	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/kg	< 5		5	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/kg	< 5		5	Pass	
Method Blank	<i></i>		л — т	-		
Perfluoroalkyl sulfonamido substances						-
Perfluorooctane sulfonamide (FOSA)	ug/kg	< 5		5	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/kg	< 5		5	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/kg	< 5		5	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N- MeFOSE)	ug/kg	< 5		5	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/kg ug/kg	< 5		5	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/kg ug/kg	< 10		10	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-Eir OSAA)	ug/kg ug/kg	< 10		10	Pass	
Method Blank	ug/kg	< 10		10	F 455	
Perfluoroalkyl sulfonic acids (PFSAs)		I			[
Perfluorobutanesulfonic acid (PFBS)	ug/kg	< 5		5	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/kg	< 5		5	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/kg ug/kg	< 5		5	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/kg ug/kg	< 5		5	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/kg ug/kg	< 5		5	Pass	
Perfluoroheptanesulfonic acid (PFHpS)		< 5		5	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/kg	< 5		5	Pass	
	ug/kg	< 5		5		
Perfluorodecanesulfonic acid (PFDS)	ug/kg	< 5		Ð	Pass	
Method Blank					1	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)					Deee	
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/kg	< 5		5	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/kg	< 10		10	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/kg	< 5		5	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/kg	< 5		5	Pass	
LCS - % Recovery		1			1	
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	%	111		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	103		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	110		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	110		50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	113		50-150	Pass	
Perfluorononanoic acid (PFNA)	%	108		50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	111		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	129		50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	117		50-150	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Perfluorotridecanoic acid (PFTrDA)	%	110	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	110	50-150	Pass	
LCS - % Recovery					
Perfluoroalkyl sulfonamido substances					
Perfluorooctane sulfonamide (FOSA)	%	117	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	%	120	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	%	119	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N- MeFOSE)	%	119	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	%	121	50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	%	111	50-150	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	%	118	50-150	Pass	
LCS - % Recovery					
Perfluoroalkyl sulfonic acids (PFSAs)					
Perfluorobutanesulfonic acid (PFBS)	%	100	50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	%	140	50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	%	95	50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	%	97	50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	%	106	50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	%	107	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	%	104	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	%	99	50-150	Pass	
LCS - % Recovery					
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)					
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	%	117	50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	%	114	50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	%	123	50-150	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	%	103	50-150	Pass	

Comments

This report has been revised (V2) to amend QC duplicate results for PFHxS and PFOS.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No
Some samples have been subcontracted	NO

Qualifier Codes/Comments

Code Description

 N11
 Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.

 N15
 Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation).

Authorised By

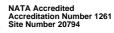
Ursula Long Sarah McCallion Scott Beddoes Analytical Services Manager Senior Analyst-PFAS (QLD) Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.


Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

🛟 eurofins

Environment Testing

Nation Partners 306 / 50 Holt Street, Surry Hills NSW 2010

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Luke Clements

Report Project name Project ID Received Date **708095-W-V2** FRNSW TARRO NP 19039 Mar 16, 2020

Client Sample ID			SW10
Sample Matrix			Water
Eurofins Sample No.			B20-Ma23966
•			
Date Sampled			Mar 16, 2020
Test/Reference	LOR	Unit	
Perfluoroalkyl carboxylic acids (PFCAs)			
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	0.14
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	0.16
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	^{N09} 0.04
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	^{N09} 0.04
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	0.02
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01
13C4-PFBA (surr.)	1	%	103
13C5-PFPeA (surr.)	1	%	98
13C5-PFHxA (surr.)	1	%	96
13C4-PFHpA (surr.)	1	%	127
13C8-PFOA (surr.)	1	%	141
13C5-PFNA (surr.)	1	%	138
13C6-PFDA (surr.)	1	%	92
13C2-PFUnDA (surr.)	1	%	123
13C2-PFDoDA (surr.)	1	%	135
13C2-PFTeDA (surr.)	1	%	118
Perfluoroalkyl sulfonamido substances			
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	0.05	ug/L	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	0.05	ug/L	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	0.05	ug/L	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05
13C8-FOSA (surr.)	1	%	93
D3-N-MeFOSA (surr.)	1	%	71
D5-N-EtFOSA (surr.)	1	%	72

First Reported: Mar 19, 2020 Date Reported: Mar 23, 2020

Client Sample ID			SW10
Sample Matrix			Water
Eurofins Sample No.			B20-Ma23966
Date Sampled			Mar 16, 2020
Test/Reference	LOR	Unit	
Perfluoroalkyl sulfonamido substances			
D7-N-MeFOSE (surr.)	1	%	70
D9-N-EtFOSE (surr.)	1	%	81
D5-N-EtFOSAA (surr.)	1	%	INT
D3-N-MeFOSAA (surr.)	1	%	INT
Perfluoroalkyl sulfonic acids (PFSAs)	•	•	
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	0.06
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	0.02
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	^{N09} 0.05
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	^{N09} 0.38
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	^{N09} 0.03
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	^{N09} 1.2
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01
13C3-PFBS (surr.)	1	%	147
18O2-PFHxS (surr.)	1	%	129
13C8-PFOS (surr.)	1	%	113
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.01	ug/L	< 0.01
13C2-4:2 FTSA (surr.)	1	%	107
13C2-6:2 FTSA (surr.)	1	%	128
13C2-8:2 FTSA (surr.)	1	%	90
13C2-10:2 FTSA (surr.)	1	%	80
PFASs Summations	1	1	
Sum (PFHxS + PFOS)*	0.01	ug/L	1.58
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	1.24
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	1.62
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	2.07
Sum of PFASs (n=30)*	0.1	ug/L	2.19

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Mar 17, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Mar 17, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Mar 17, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Mar 17, 2020	14 Days

- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)

						Austra	lia				New Zealand			
Environment Testing				Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271			3175)0	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: - 461 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767: Phone : 0800 856 450 IANZ # 1290		
	mpany Name: dress:	Nation Partn 306 / 50 Holt Surry Hills NSW 2010	•				R P	rder I eport hone: ax:	#:	708095 0405 821 580		Received: Due: Priority: Contact Name:	Mar 16, 2020 1:15 F Mar 19, 2020 3 Day Luke Clements	PM
	Project Name: FRNSW TARRO Project ID: NP 19039										Eurofins Analytical	Services Manager : U	rsula Long	
Sample Detail				pH (1:5 Aqueous extract at 25°C as rec.)	Total Organic Carbon	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)							
	ourne Laborato	-		271		X	X			_				
	ney Laboratory bane Laboratory					-		x	x	-				
	h Laboratory - N	-								-				
	rnal Laboratory									1				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	SW10	Mar 16, 2020		Water	B20-Ma23966				Х]				
2	SD10	Mar 16, 2020		Soil	B20-Ma23967	Х	Х	х	х					
Tost	Counts					1	1	1	2					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	ug/L	< 0.05		0.05	Pass	
Perfluoropentanoic acid (PFPeA)	ug/L	< 0.01		0.01	Pass	
Perfluorohexanoic acid (PFHxA)	ug/L	< 0.01		0.01	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/L	< 0.01		0.01	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.01		0.01	Pass	
Perfluorononanoic acid (PFNA)	ug/L	< 0.01		0.01	Pass	
Perfluorodecanoic acid (PFDA)	ug/L	< 0.01		0.01	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/L	< 0.01		0.01	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/L	< 0.01		0.01	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/L	< 0.01		0.01	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/L	< 0.01		0.01	Pass	
Method Blank			· · ·			
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)	ug/L	< 0.05		0.05	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/L	< 0.05		0.05	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/L	< 0.05		0.05	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N- MeFOSE)	ug/L	< 0.05		0.05	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/L	< 0.05		0.05	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/L	< 0.05		0.05	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/L	< 0.05		0.05	Pass	
Method Blank						
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS)	ug/L	< 0.01		0.01	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/L	< 0.01		0.01	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/L	< 0.01		0.01	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/L	< 0.01		0.01	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/L	< 0.01		0.01	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/L	< 0.01		0.01	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/L	< 0.01		0.01	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/L	< 0.01		0.01	Pass	
Method Blank	ug/L	<u> </u>		0.01	1 400	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/L	< 0.01		0.01	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/L	< 0.01		0.01	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/L	< 0.03		0.00	Pass	
1H.1H.2H.2H.perfluorododecanesulfonic acid (0.2 FTSA)	ug/L	< 0.01		0.01	Pass	
LCS - % Recovery	ug/L	< 0.01		0.01	1 855	
Perfluoroalkyl carboxylic acids (PFCAs)		1				
Perfluorobutanoic acid (PFBA)	%	99		50-150	Pass	
Perfluoropentanoic acid (PFPA)	%	99		50-150	Pass	
Perfluorohexanoic acid (PFPEA)	%	90		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	93		50-150	Pass	
Perfluorooctanoic acid (PFIDA)	%	97				
Perfluorononanoic acid (PFNA)	%			50-150 50-150	Pass	
		110		50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	94		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	92		50-150	Pass	<u> </u>
Perfluorododecanoic acid (PFDoDA)	%	112		50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	63		50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	65		50-150	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery									
Perfluoroalkyl sulfonamido substa	nces								
Perfluorooctane sulfonamide (FOSA	A)		%	71			50-150	Pass	
N-methylperfluoro-1-octane sulfonar	nide (N-MeFOSA)		%	63			50-150	Pass	
N-ethylperfluoro-1-octane sulfonami	de (N-EtFOSA)		%	59			50-150	Pass	
2-(N-methylperfluoro-1-octane sulfor	namido)-ethanol (N	4-							
MeFOSE)			%	70			50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfona		,	%	62			50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoa		,	%	128			50-150	Pass	
N-methyl-perfluorooctanesulfonamid	loacetic acid (N-Me	eFOSAA)	%	115			50-150	Pass	
LCS - % Recovery				1	1		1		
Perfluoroalkyl sulfonic acids (PFS)									
Perfluorobutanesulfonic acid (PFBS)	-		%	80			50-150	Pass	
Perfluorononanesulfonic acid (PFNS	1		%	89			50-150	Pass	
Perfluoropropanesulfonic acid (PFPr	1		%	91			50-150	Pass	
Perfluoropentanesulfonic acid (PFPe	1		%	87			50-150	Pass	
Perfluorohexanesulfonic acid (PFHx	/		%	101			50-150	Pass	
Perfluoroheptanesulfonic acid (PFH	,		%	78			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	/		%	95			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS	5)		%	58			50-150	Pass	
LCS - % Recovery				1	1		1		
n:2 Fluorotelomer sulfonic acids (r	າ:2 FTSAs)		1						
1H.1H.2H.2H-perfluorohexanesulfor	nic acid (4:2 FTSA)		%	62			50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfoni	ic acid (6:2 FTSA)		%	80			50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfor	nic acid (8:2 FTSA)		%	111			50-150	Pass	
1H.1H.2H.2H-perfluorododecanesul	fonic acid (10:2 FT	SA)	%	103			50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1			1		
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	M20-Ma22423	NCP	ug/L	0.46	0.45	3.0	30%	Pass	
Perfluoropentanoic acid (PFPeA)	M20-Ma22423	NCP	ug/L	0.58	0.57	2.0	30%	Pass	
Perfluorohexanoic acid (PFHxA)	M20-Ma22423	NCP	ug/L	2.9	2.8	1.0	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	M20-Ma22423	NCP	ug/L	0.17	0.18	4.0	30%	Pass	
Perfluorooctanoic acid (PFOA)	M20-Ma22423	NCP	ug/L	0.48	0.48	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	M20-Ma22423	NCP	ug/L	0.05	0.05	5.0	30%	Pass	
Perfluorodecanoic acid (PFDA)	M20-Ma22423	NCP	ug/L	0.04	0.04	2.0	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	M20-Ma22423	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	M20-Ma22423	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	M20-Ma22423	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M20-Ma22423	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	M20-Ma22423	NCP	ug/L	0.07	0.07	6.0	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M20-Ma22423	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M20-Ma22423	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M20-Ma22423	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M20-Ma22423	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	

Duplicate									
Perfluoroalkyl sulfonamido substa	inces	-		Result 1	Result 2	RPD			
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M20-Ma22423	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M20-Ma22423	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate				1	1			1	
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	M20-Ma22423	NCP	ug/L	0.17	0.19	10	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	M20-Ma22423	NCP	ug/L	0.38	0.40	4.0	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M20-Ma22423	NCP	ug/L	0.10	0.09	6.0	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M20-Ma22423	NCP	ug/L	0.23	0.24	6.0	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M20-Ma22423	NCP	ug/L	2.5	2.2	11	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M20-Ma22423	NCP	ug/L	0.25	0.24	5.0	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	M20-Ma22423	NCP	ug/L	32	26	20	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	M20-Ma22423	NCP	ug/L	0.02	0.02	<1	30%	Pass	
Duplicate	•								
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M20-Ma22423	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M20-Ma22423	NCP	ug/L	2.4	2.4	2.0	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M20-Ma22423	NCP	ug/L	0.43	0.42	1.0	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M20-Ma22423	NCP	ug/L	0.03	0.03	4.0	30%	Pass	

Comments

This report has been revised (V2) to amend QC duplicate results for PFHxS and PFOS.

Qualifier Codes/Comments

 Code
 Description

 N09
 Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.

 N11
 Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogue allow identification and recovery correction of the concentration of the associated native PFAS compounds.

 N15
 Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation).

Authorised By

Ursula Long Sarah McCallion Analytical Services Manager Senior Analyst-PFAS (QLD)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

SOLUTIONS FOR COMPLEX PROJECTS

Appendix B – HHRA Risk Model

General Information

Site:	OLOL Primary School
Address:	Tarro
Client:	FR NSW

Receptors and Exposure Pathways

Receptors	On-Site	Off-Site	Exposure Scenarios
	х		Incidental Ingestion of Soil
Adults and children that attend OLOL Primary School			Incidental Ingestion of Surface Water
(on-site)	х		Inhalation of soil derived dust in outdoor air
(on-site)	х		Ingestion of home grown produce (fruits and vegetables)
	х		Ingestion of home grown produce (chicken eggs)
		х	Incidental Ingestion of Soil
			Incidental Ingestion of Surface Water
Residents that inhabit properties adjacent to the Site		х	Inhalation of soil derived dust in indoor air
(off-site)		х	Inhalation of soil derived dust in outdoor air
		х	Ingestion of home grown produce (fruits and vegetables)
		х	Ingestion of home grown produce (chicken eggs)
			Incidental Ingestion of Soil
Recreational receptors that use Tarro Reserve		х	Incidental Ingestion of Surface Water

Exposure Point Concentrations

Contaminant of Potential Concern (CoPC)	units	EPC	Source/Justification					
		Soil (On-Sit	e)					
Perfluorooctane sulfonate (PFOS)	mg/kg	2.5						
Perfluorooctanoic acid (PFOA)	mg/kg		maximum reported concentration in on-site soils sampled between					
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.32	0 - 0.4 m bgl					
Perfluorohexanoic acid (PFHxA)	mg/kg	0.073						
		Soil (Off-Sit	re)					
Perfluorooctane sulfonate (PFOS)	mg/kg	0.15						
Perfluorooctanoic acid (PFOA)	mg/kg		maximum reported concentration in off-site soils sampled between					
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.009	0 - 0.4 m bgl					
Perfluorohexanoic acid (PFHxA)	mg/kg	0.005						
Surface Water (Off-Site)								
Perfluorooctane sulfonate (PFOS)	mg/L	0.0012	maximum reported concentration in off-site surface water sampled					
Perfluorooctanoic acid (PFOA)	mg/L	0.00004	from stormwater drainage channels and the waterbody located in					
Perfluorohexane sulfonate (PFHxS)	mg/L	0.00038	Tarro Reserve					
Perfluorohexanoic acid (PFHxA)	mg/L	0.00016						
Soil Concentrations	used to Estir	nate Home	Grown Produce Exposure (On-Site)					
Perfluorooctane sulfonate (PFOS)	mg/kg	2.5						
Perfluorooctanoic acid (PFOA)	mg/kg		maximum reported concentration in on-site soils sampled between					
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.32	0 - 0.4 m bgl					
Perfluorohexanoic acid (PFHxA)	mg/kg	0.073						
Soil Concentration us	ed to Estim	ated Home	Grown Produce Exposure (Off-Site)					
Perfluorooctane sulfonate (PFOS)	mg/kg	0.15						
Perfluorooctanoic acid (PFOA)	mg/kg	0.005	maximum reported concentration in off-site soils sampled between					
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.009	0 - 0.4 m bgl					
Perfluorohexanoic acid (PFHxA)	mg/kg	0.005						

Toxicity Assessment

СоРС	Tolerable Daily Intake (TDI)	Background Intake (ingestion)	Tolerable Daily Intake (TDI) - Background Adjusted	Background Intake (inhalation)	Tolerable Concentration in Ai (RfC) (calculated from TDI)	r Oral Bioavaiability
	mg/kg/day	mg/kg/day	mg/kg/day	mg/m3	mg/m3	unitless
Perfluorooctane sulfonate (PFOS)	2.00E-05	1.40E-06	1.86E-05	0.00E+00	7.00E-05	1.00
Perfluorooctanoic acid (PFOA)	1.60E-04	7.80E-07	1.59E-04	0.00E+00	5.60E-04	1.00
Perfluorohexane sulfonate (PFHxS)	2.00E-05	0.00E+00	2.00E-05	0.00E+00	7.00E-05	1.00
Perfluorohexanoic acid (PFHxA)	1.00E-01	0.00E+00	1.00E-01	0.00E+00	3.50E-01	1.00

Exposure Parameters

		Adults and children that attend OLOL Primary School (on-site)						
General	units	Adult	Reference	Child	Reference			
Body weight	kg	70	NEPC (2013)	24	The average body weight of children aged 4 to <8 years old as listed in the enHealth (2012) exposure factors guide has been adopted as children who attend the primary school will be 5 years old (or older).			
Exposure duration	yr	30	Assumes teachers may work at the same school for up to 30 years.	8	It is assumed that children will attend the school from kindergarten through to grade six plus the potential for a child to repeat up to one year of schooling.			
Averaging time (non-carcinogens)	yr	30	Assumes teachers may work at the same school for up to 30 years.	8	It is assumed that children will attend the school from kindergarten through to grade six plus the potential for a child to repeat up to one year of schooling.			

Incidental Soil Ingestion					
Daily soil ingestion rate	mg/day	50	NEPC (2013)	100	NEPC (2013)
Exposure frequency for soil ingestion	days/yr	210	Site-specific assumption - assumes teachers will be at school for 4 x 10 week terms plus som additional days if they attend the school on the weekend or where terms are slightly longer than 10 weeks.	210	Site-specific assumption - assumes children will be at school for 4 x 10 week terms plus som additional days if they play at the school on the weekend or where terms are slightly longer than 10 weeks.

Outdoor Inhalation					
Exposure time (outdoor air)	hrs/day	4	This assumes that teachers may spend up to 4 hours per day in the school yard.	4	This assumes thatchildren may spend up to 4 hours per day in the school yard.
Exposure time (indoor air)	hrs/day	4	This assumes that teachers may spend up to 4 hours per day in classroom.	4	This assumes that children may spend up to 4 hours per day in the classroom.
Exposure frequency (outdoor air)	days/yr	210	Site-specific assumption - assumes teachers will be at school for 4 x 10 week terms plus som additional days if they attend the school on the weekend or where terms are slightly longer than 10 weeks.	210	Site-specific assumption - assumes children will be at school for 4 x 10 week terms plus som additional days if they play at the school on the weekend or where terms are slightly longer than 10 weeks.
Particulate emission factor (outdoor air)	m3/kg	2.60E+07	NEPC (2013) - Recreational User PEF has been adopted.	2.60E+07	NEPC (2013) - Recreational User PEF has been adopted.
Indoor Air Dust Factor	m3/kg	2.60E+07	NEPC (2013)	2.60E+07	NEPC (2013)
Lung Retention Factor (dust inhalation)	unitless	0.375	NEPC (2013)	0.375	NEPC (2013)

Ingestion of Home Grown Produce					
Fraction of produce consumed from the site	%	10%	NEPC (2013)	10%	NEPC (2013)
Exposure Frequency	days/year	210	NEPC (2013)	210	NEPC (2013)
Consumption Rate - Chicken Eggs	g/day	59	FSANZ (2017) P90 value for people aged 2 years and above	36	FSANZ (2017) P90 value for children aged 2-6
Consumption Rate - Fruit	kg/day	0.14	NEPC (2013)	0.18	NEPC (2013)
Consumption Rate - Green Vegetables	kg/day	0.15	NEPC (2013) assumes 59% of vegetables consumed (260 g/day) are green vegetables	0.055	NEPC (2013) assumes 55% of vegetables consumed (100 g/day) are green vegetables
Consumption Rate - Tuber Vegetables	kg/day	0.060	NEPC (2013) assumes 23% of vegetables consumed (260 g/day) are tuber vegetables	0.028	NEPC (2013) assumes 28% of vegetables consumed (100 g/day) are tuber vegetables
Consumption Rate - Root Vegetables	kg/day	0.047	NEPC (2013) assumes 18% of vegetables consumed (260 g/day) are root vegetables	0.017	NEPC (2013) assumes 17% of vegetables consumed (100 g/day) are root vegetables

Human Health Risk Assessment Model

Chicken Egg Transfer Factors	unit	value	Reference
Fraction of plant type grown on contaminated soil and			
ingested by the animal (chicken)	unitless	1	Professional judgement. Assumed 100% from source area
			Professional judgement, based on information provided by NSW department of agriculture (https://www.dpi.nsw.gov.au/animals-and- livestock/poultry-and-birds/poultry-planning-and-
Quantity of plant type eaten by the animal each day	kg DW plant/day	0.105	keeping/planning-for-poultry-development/bpm)
Quantity of soil eaten by the animal	kg/day	0.0105	Professional judgement. Assumes 10% of feed quantity may be made up of soil
			Professional judgement, based on information provided by NSW department of agriculture (https://www.dpi.nsw.gov.au/animals-and- livestock/poultry-and-birds/poultry-planning-and-
Quantity of water consumed by the animal	L/day	0.208	keeping/planning-for-poultry-development/bpm)
Laying Rate	eggs/day	0.9	Professional judgement.
Average weight of edible portion of the egg	kg	0.0563	Scolexia (2017)

Chicken Egg Transfer Factors	unit	value	Reference
Perfluorooctane sulfonate (PFOS)	unitless	1	These values have been adopted from a report conducted
Perfluorooctanoic acid (PFOA)	unitless	0.46	by Scolexia/AECOM (2017) as part of the Department of Defence investigation at RAAF Williamtown. This study
Perfluorohexane sulfonate (PFHxS)	unitless	0.69	investigated PFAS uptake from drinking water into chicken
Perfluorohexanoic acid (PFHxA)	unitless	0.005	eggs.

Soil-Fruit Concentration Factor	unit	value	Reference
	mg-chem/kg-plant per		
Perfluorooctane sulfonate (PFOS)	mg-chem/kg-soil	0.02	
	mg-chem/kg-plant per		NSW OEH (2019) - values adopted in the derivation of
Perfluorooctanoic acid (PFOA)	mg-chem/kg-soil	0.03	human health soil screening criteria for PFOS, PFHxS and
	mg-chem/kg-plant per		PFOA.
Perfluorohexane sulfonate (PFHxS)	mg-chem/kg-soil	0.02	TTOA.
	mg-chem/kg-plant per		
Perfluorohexanoic acid (PFHxA)	mg-chem/kg-soil	0	

Soil-Green Vegetable Concentration Factor	unit	value	Reference
Development and the sets (DEOC)	mg-chem/kg-plant per		
Perfluorooctane sulfonate (PFOS)	mg-chem/kg-soil	0.79	
Perfluorooctanoic acid (PFOA)	mg-chem/kg-plant per mg-chem/kg-soil	0.1	NSW OEH (2019) - values adopted in the derivation of human health soil screening criteria for PFOS, PFHxS and
Perfluorohexane sulfonate (PFHxS)	mg-chem/kg-plant per mg-chem/kg-soil	0.79	PFOA.
	mg-chem/kg-plant per		
Perfluorohexanoic acid (PFHxA)	mg-chem/kg-soil	0	

Human Health Risk Assessment Model

Soil-Tuber Vegetable Concentration Factor	unit	value	Reference
	mg-chem/kg-plant per		
Perfluorooctane sulfonate (PFOS)	mg-chem/kg-soil	0.2	
Perfluorooctanoic acid (PFOA)	mg-chem/kg-plant per mg-chem/kg-soil	0.03	NSW OEH (2019) - values adopted in the derivation of human health soil screening criteria for PFOS, PFHxS and
	mg-chem/kg-plant per		PFOA.
Perfluorohexane sulfonate (PFHxS)	mg-chem/kg-soil	0.2	1104.
	mg-chem/kg-plant per		
Perfluorohexanoic acid (PFHxA)	mg-chem/kg-soil	0	

Soil-Root Vegetable Concentration Factor	unit	value	Reference
	mg-chem/kg-plant per		
Perfluorooctane sulfonate (PFOS)	mg-chem/kg-soil	0.51	
	mg-chem/kg-plant per		NSW OEH (2019) - values adopted in the derivation of
Perfluorooctanoic acid (PFOA)	mg-chem/kg-soil	0.15	human health soil screening criteria for PFOS, PFHxS and
	mg-chem/kg-plant per		PFOA.
Perfluorohexane sulfonate (PFHxS)	mg-chem/kg-soil	0.51	1106.
	mg-chem/kg-plant per		
Perfluorohexanoic acid (PFHxA)	mg-chem/kg-soil	0	

Risk Characterisation

Adults and children that attend OLOL Primary School (on-site)

ADULT											
Сорс	Exposure Point Concentratio in Soil	ⁿ Hazard Quotient (HQ)	TDI (Background Adjusted)	Chronic Daily Intake (non- carcinogens)	Ingestion Rate	Oral Bioavailability	Exposure Frequency	Exposure Duration	Fraction Ingested from Contaminated Source	Averaging Time (non- carcinogens)	Body Weight
Incidental Ingestion of Soil	mg/kg	unitless	mg/kg/day	mg/kg/day	mg/day	unitless	days/year	years	unitless	years	kg
Perfluorooctane sulfonate (PFOS)	2.5	5.52E-02	1.86E-05	1.03E-06	50	1	210	30	1	30	70
Perfluorooctanoic acid (PFOA)	0.078	2.01E-04	1.59E-04	3.21E-08	50	1	210	30	1	30	70
Perfluorohexane sulfonate (PFHxS)	0.32	6.58E-03	2.00E-05	1.32E-07	50	1	210	30	1	30	70
Perfluorohexanoic acid (PFHxA)	0.073	3.00E-07	1.00E-01	3.00E-08	50	1	210	30	1	30	70
Exposure Pathway Speci	fic Hazard Index	6.20E-02									

Inhalation of soil derived dust in outdoor air	in soli		(Background Adjusted)	Concentration	(outdoors)	Emission Factor		Bioavailability	Exposure Time	Exposure Frequency	Exposure Duration	Averaging Time (non- carcinogens)	Body weight
	mg/kg	unitless	mg/m3	mg/m3	mg/m3	m3/kg	unitless	unitless	hours/day	days/year	years	years	kg
Perfluorooctane sulfonate (PFOS)	2.5	4.94E-05	7.00E-05	3.46E-09	9.62E-08	2.60E+07	3.75E-01	1	4	210	30	30	70
Perfluorooctanoic acid (PFOA)	0.078	1.93E-07	5.60E-04	1.08E-10	3.00E-09	2.60E+07	3.75E-01	1	4	210	30	30	70
Perfluorohexane sulfonate (PFHxS)	0.32	6.32E-06	7.00E-05	4.43E-10	1.23E-08	2.60E+07	3.75E-01	1	4	210	30	30	70
Perfluorohexanoic acid (PFHxA)	0.073	2.88E-10	3.50E-01	1.01E-10	2.81E-09	2.60E+07	3.75E-01	1	4	210	30	30	70
Exposure Pathway Specific	: Hazard Index	5.59E-05											

Inhalation of soil derived dust in indoor ai	Exposure Point Concentration r in Soil	ⁿ Hazard Quotient (HQ)	RfC (Background Adjusted)	Exposure Adjusted Air Concentration	Concentration in Air (indoors)	Particulate Emission Factor	Lung Retention Factor (RF)	Oral Bioavailability	Exposure Time	Exposure Frequency	Exposure Duration	Averaging Time (non- carcinogens)	Body Weight
	mg/kg	unitless	mg/m3	mg/m3	mg/m3	m3/kg	unitless	unitless	hours/day	days/year	years	years	kg
Perfluorooctane sulfonate (PFOS)	2.5	4.94E-05	7.00E-05	3.46E-09	9.62E-08	2.60E+07	3.75E-01	1	4	210	30	30	70
Perfluorooctanoic acid (PFOA)	0.078	1.93E-07	5.60E-04	1.08E-10	3.00E-09	2.60E+07	3.75E-01	1	4	210	30	30	70
Perfluorohexane sulfonate (PFHxS)	0.32	6.32E-06	7.00E-05	4.43E-10	1.23E-08	2.60E+07	3.75E-01	1	4	210	30	30	70
Perfluorohexanoic acid (PFHxA)	0.073	2.88E-10	3.50E-01	1.01E-10	2.81E-09	2.60E+07	3.75E-01	1	4	210	30	30	70
Exposure Pathway Specifi	c Hazard Index	5.59E-05											

Ingestion of Home Grown Produce - Chicken Eggs	Exposure Point Concentrati in Soil	^{on} Hazard Quotient (HQ)	TDI (Background Adjusted)	Chronic Daily Intake (non- carcinogens)	Concentration in Eggs	Egg Transfer Factor	Egg Consumption Rate	Oral Bioavailability	Exposure Frequency	Exposure Duration	Fraction Ingested from Contaminated Source	Averaging Time (non- carcinogens)	Body Weight
Chicken Legs	mg/kg	unitless	mg/kg/day	mg/kg/day	mg/kg	unitless	mg/day	unitless	days/year	years	unitless	years	kg
Perfluorooctane sulfonate (PFOS)	2.5	1.20E+01	1.86E-05	2.24E-04	4.61E+00	1.00E+00	59000	1	210	30	0.1	30	70
Perfluorooctanoic acid (PFOA)	0.078	4.53E-03	1.59E-04	7.21E-07	1.49E-02	4.60E-01	59000	1	210	30	0.1	30	70
Perfluorohexane sulfonate (PFHxS)	0.32	9.87E-01	2.00E-05	1.97E-05	4.07E-01	6.90E-01	59000	1	210	30	0.1	30	70
Perfluorohexanoic acid (PFHxA)	0.073	3.67E-08	1.00E-01	3.67E-09	7.56E-05	5.00E-03	59000	1	210	30	0.1	30	70
Exposure Pathway Specif	fic Hazard Index	1.30E+01											

Ingestion of Home Grown Produce - Fruits and Vegetables	s Exposure Point Concentration in Soil Hazard Quotient (HQ)		TDI (Background Adjusted)	Chronic Daily Intake (non- carcinogens)	Plant Intake Factor	Oral Bioavailability	Exposure Frequency	Exposure Duration	Fraction Ingested from Contaminated Source	Averaging Time (non- carcinogens)	Body Weight
and vegetables	mg/kg	unitless	mg/kg/day	mg/kg/day	kg/day	unitless	days/year	years	unitless	years	kg
Perfluorooctane sulfonate (PFOS)	2.5	1.77E-05	1.86E-05	3.28E-10	1.60E-01	1	210	30	0.1	30	70
Perfluorooctanoic acid (PFOA)	0.078	1.14E-08	1.59E-04	1.82E-12	2.84E-02	1	210	30	0.1	30	70
Perfluorohexane sulfonate (PFHxS)	0.32	2.10E-06	2.00E-05	4.20E-11	1.60E-01	1	210	30	0.1	30	70
Perfluorohexanoic acid (PFHxA)	0.073	0.00E+00	1.00E-01	0.00E+00	0.00E+00	1	210	30	0.1	30	70
Exposure Pathway Specifi	: Hazard Index	1.98E-05									

Hazard Index 1.31E+01

Human Health Risk Assessment Model

|--|

CoPC	Exposure Point Concentratio in Soil	ⁿ Hazard Quotient (HQ)	TDI (Background Adjusted)	Chronic Daily Intake (non- carcinogens)	Ingestion Rate	Oral Bioavailability	Exposure Frequency	Exposure Duration	Fraction Ingested from Contaminated Source	Averaging Time (non- carcinogens)	Body Weight
Incidental Ingestion of Soil	mg/kg	unitless	mg/kg/day	mg/kg/day	mg/day	unitless	days/year	years	unitless	years	kg
Perfluorooctane sulfonate (PFOS)	2.5	3.22E-01	1.86E-05	5.99E-06	100	1	210	8	1	8	24
Perfluorooctanoic acid (PFOA)	0.078	1.17E-03	1.59E-04	1.87E-07	100	1	210	8	1	8	24
Perfluorohexane sulfonate (PFHxS)	0.32	3.84E-02	2.00E-05	7.67E-07	100	1	210	8	1	8	24
Perfluorohexanoic acid (PFHxA)	0.073	1.75E-06	1.00E-01	1.75E-07	100	1	210	8	1	8	24
Exposure Pathway Speci	fic Hazard Index	3.62E-01									

Inhalation of soil derived dust in outdoor	Exposure Point Concentration in Soil	ⁿ Hazard Quotient (HQ)	RfC (Background Adjusted)	Exposure Adjusted Air Concentration	Concentration in Air (outdoors)	Particulate Emission Factor	Lung Retention Factor (RF)	Oral Bioavailability	Exposure Time	Exposure Frequency	Exposure Duration	Averaging Time (non- carcinogens)	Body Weight
an	mg/kg	unitless	mg/m3	mg/m3	mg/m3	m3/kg	unitless	unitless	hours/day	days/year	years	years	kg
Perfluorooctane sulfonate (PFOS)	2.5	4.94E-05	7.00E-05	3.46E-09	9.62E-08	2.60E+07	3.75E-01	1	4	210	8	8	24
Perfluorooctanoic acid (PFOA)	0.078	1.93E-07	5.60E-04	1.08E-10	3.00E-09	2.60E+07	3.75E-01	1	4	210	8	8	24
Perfluorohexane sulfonate (PFHxS)	0.32	6.32E-06	7.00E-05	4.43E-10	1.23E-08	2.60E+07	3.75E-01	1	4	210	8	8	24
Perfluorohexanoic acid (PFHxA)	0.073	2.88E-10	3.50E-01	1.01E-10	2.81E-09	2.60E+07	3.75E-01	1	4	210	8	8	24
Exposure Pathway Specifi	c Hazard Index	5.59E-05											

Inhalation of soil derived dust in indoor ai	Exposure Point Concentration in Soil	^{on} Hazard Quotient (HQ)	RfC (Background Adjusted)	Exposure Adjusted Air Concentration	Concentration in Air (indoors)	Particulate Emission Factor	Lung Retention Factor (RF)	Oral Bioavailability	Exposure Time	Exposure Frequency	Exposure Duration	Averaging Time (non- carcinogens)	Body Weight
	mg/kg	unitless	mg/m3	mg/m3	mg/m3	m3/kg	unitless	unitless	hours/day	days/year	years	years	kg
Perfluorooctane sulfonate (PFOS)	2.5	4.94E-05	7.00E-05	3.46E-09	9.62E-08	2.60E+07	3.75E-01	1	4	210	8	8	24
Perfluorooctanoic acid (PFOA)	0.078	1.93E-07	5.60E-04	1.08E-10	3.00E-09	2.60E+07	3.75E-01	1	4	210	8	8	24
Perfluorohexane sulfonate (PFHxS)	0.32	6.32E-06	7.00E-05	4.43E-10	1.23E-08	2.60E+07	3.75E-01	1	4	210	8	8	24
Perfluorohexanoic acid (PFHxA)	0.073	2.88E-10	3.50E-01	1.01E-10	2.81E-09	2.60E+07	3.75E-01	1	4	210	8	8	24
Exposure Pathway Specifi	c Hazard Index	5.59E-05											

Ingestion of Home Grown Produce - Chicken Eggs	Exposure Point Concentration in Soil	^{on} Hazard Quotient (HQ)	TDI (Background Adjusted)	Chronic Daily Intake (non- carcinogens)	Concentration in Eggs	Egg Transfer Factor	Egg Consumption Rate	Oral Bioavailability	Exposure Frequency	Exposure Duration	Fraction Ingested from Contaminated Source	Averaging Time (non- carcinogens)	Body Weight
Chicken Eggs	mg/kg	unitless	mg/kg/day	mg/kg/day	mg/kg	unitless	mg/day	unitless	days/year	years	unitless	years	kg
Perfluorooctane sulfonate (PFOS)	2.5	2.14E+01	1.86E-05	3.98E-04	4.61E+00	1.00E+00	36000	1	210	8	0.1	8	24
Perfluorooctanoic acid (PFOA)	0.078	8.06E-03	1.59E-04	1.28E-06	1.49E-02	4.60E-01	36000	1	210	8	0.1	8	24
Perfluorohexane sulfonate (PFHxS)	0.32	1.76E+00	2.00E-05	3.51E-05	4.07E-01	6.90E-01	36000	1	210	8	0.1	8	24
Perfluorohexanoic acid (PFHxA)	0.073	6.53E-08	1.00E-01	6.53E-09	7.56E-05	5.00E-03	36000	1	210	8	0.1	8	24
Exposure Pathway Speci	fic Hazard Index	2.32E+01											

Ingestion of Home Grown Produce - Fruits and Vegetables	Exposure Point Concentration in Soil	Hazard Quotient (HQ)	TDI (Background Adjusted)	Chronic Daily Intake (non- carcinogens)	Plant Intake Factor	Oral Bioavailability	Exposure Frequency	Exposure Duration	Fraction Ingested from Contaminated Source	Averaging Time (non- carcinogens)	Body Weight
and vegetables	mg/kg	unitless	mg/kg/day	mg/kg/day	kg/day	unitless	days/year	years	unitless	years	kg
Perfluorooctane sulfonate (PFOS)	2.5	5.15E-05	1.86E-05	9.58E-10	1.60E-01	1	210	8	0.1	8	24
Perfluorooctanoic acid (PFOA)	0.078	3.33E-08	1.59E-04	5.30E-12	2.84E-02	1	210	8	0.1	8	24
Perfluorohexane sulfonate (PFHxS)	0.32	6.13E-06	2.00E-05	1.23E-10	1.60E-01	1	210	8	0.1	8	24
Perfluorohexanoic acid (PFHxA)	0.073	0.00E+00	1.00E-01	0.00E+00	0.00E+00	1	210	8	0.1	8	24
Exposure Pathway Specifie	: Hazard Index	5.77E-05									

Hazard Index 2.35E+01

Exposure Parameters

			Residents that inhabit propertie	s adjacent to t	he Site (off-site)
General	units	Adult	Reference	Child	Reference
Body weight	kg	70	NEPC (2013)	15	NEPC (2013)
Exposure duration	yr	29	NEPC (2013)	6	NEPC (2013)
Averaging time (non-carcinogens)	yr	29	NEPC (2013)	6	NEPC (2013)
Incidental Soil Ingestion					
Daily soil ingestion rate	mg/day	50	NEPC (2013)	100	NEPC (2013)
Exposure frequency for soil ingestion	days/yr	365	NEPC (2013)	365	NEPC (2013)
Dust Inhalation					
Exposure time (outdoor air)	hrs/day	4	NEPC (2013)	4	NEPC (2013)
Exposure time (indoor air)	hrs/day	20	NEPC (2013)	20	NEPC (2013)
Exposure frequency	days/yr	365	NEPC (2013)	365	NEPC (2013)
Particulate emission factor (outdoor air)	m3/kg	2.90E+10	NEPC (2013)	2.90E+10	NEPC (2013)
Indoor Air Dust Factor	m3/kg	2.60E+07	NEPC (2013)	2.60E+07	NEPC (2013)
Lung Retention Factor (dust inhalation)	unitless	0.375	NEPC (2013)	0.375	NEPC (2013)
Ingestion of Home Grown Produce					
Fraction of produce consumed from the site	%	10%	NEPC (2013)	10%	NEPC (2013)
Exposure Frequency	days/year	365	NEPC (2013)	365	NEPC (2013)
Consumptuon Rate - Fruit	kg/day	0.14	NEPC (2013)	0.18	NEPC (2013)
Consumptuon Rate - Green Vegetables	kg/day	0.15	NEPC (2013) assumes 59% of vegetables consumed (260 g/day) are green vegetables	0.055	NEPC (2013) assumes 55% of vegetables consumed (100 g/day) are green vegetables
Consumptuon Rate - Tuber Vegetables	sumptuon Rate - Tuber Vegetables kg/day 0.060		NEPC (2013) assumes 23% of vegetables consumed (260 g/day) are tuber vegetables	0.028	NEPC (2013) assumes 28% of vegetables consumed (100 g/day) are tuber vegetables
Consumptuon Rate - Root Vegetables	Consumptuon Rate - Root Vegetables kg/day		NEPC (2013) assumes 18% of vegetables consumed (260 g/day) are root vegetables	0.017	NEPC (2013) assumes 17% of vegetables consumed (100 g/day) are root vegetables

Human Health Risk Assessment Model

Soil-Fruit Concentration Factor	unit	value	Reference
	mg-chem/kg-plant per		
Perfluorooctane sulfonate (PFOS)	mg-chem/kg-soil	0.02	
	mg-chem/kg-plant per		NSW OEH (2019) - values adopted in the derivation of
Perfluorooctanoic acid (PFOA)	mg-chem/kg-soil	0.03	human health soil screening criteria for PFOS, PFHxS and
	mg-chem/kg-plant per		PFOA.
Perfluorohexane sulfonate (PFHxS)	mg-chem/kg-soil	0.02	TTOA.
	mg-chem/kg-plant per		
Perfluorohexanoic acid (PFHxA)	mg-chem/kg-soil	0	

Soil-Green Vegetable Concentration Factor	unit	value	Reference
	mg-chem/kg-plant per		
Perfluorooctane sulfonate (PFOS)	mg-chem/kg-soil	0.79	
	mg-chem/kg-plant per		NSW OEH (2019) - values adopted in the derivation of
Perfluorooctanoic acid (PFOA)	mg-chem/kg-soil	0.1	human health soil screening criteria for PFOS, PFHxS and
	mg-chem/kg-plant per		PFOA.
Perfluorohexane sulfonate (PFHxS)	mg-chem/kg-soil	0.79	FT 0A.
	mg-chem/kg-plant per		
Perfluorohexanoic acid (PFHxA)	mg-chem/kg-soil	0	

Soil-Tuber Vegetable Concentration Factor	unit	value	Reference
	mg-chem/kg-plant per		
Perfluorooctane sulfonate (PFOS)	mg-chem/kg-soil	0.2	
	mg-chem/kg-plant per		NSW OEH (2019) - values adopted in the derivation of
Perfluorooctanoic acid (PFOA)	mg-chem/kg-soil	0.03	human health soil screening criteria for PFOS, PFHxS and
	mg-chem/kg-plant per		PFQA.
Perfluorohexane sulfonate (PFHxS)	mg-chem/kg-soil	0.2	TTOA.
	mg-chem/kg-plant per		
Perfluorohexanoic acid (PFHxA)	mg-chem/kg-soil	0	

Soil-Root Vegetable Concentration Factor	unit	value	Reference
	mg-chem/kg-plant per		
Perfluorooctane sulfonate (PFOS)	mg-chem/kg-soil	0.51	
	mg-chem/kg-plant per		NSW OEH (2019) - values adopted in the derivation of
Perfluorooctanoic acid (PFOA)	mg-chem/kg-soil	0.15	- human health soil screening criteria for PFOS, PFHxS and
	mg-chem/kg-plant per		PFOA.
Perfluorohexane sulfonate (PFHxS)	mg-chem/kg-soil	0.51	TIOA.
	mg-chem/kg-plant per		
Perfluorohexanoic acid (PFHxA)	mg-chem/kg-soil	0	

Risk Characterisation

Residents that inhabit properties adjacent to the Site (off-site)

ADULT											
CoPC	Exposure Point Concentration in Soil	ⁿ Hazard Quotient (HQ)	TDI (Background Adjusted)	Chronic Daily Intake (non- carcinogens)	Ingestion Rate	Oral Bioavailability	Exposure Frequency	Exposure Duration	Fraction Ingested from Contaminated Source	Averaging Time (non- carcinogens)	Body Weight
Incidental Ingestion of Soil	mg/kg	unitless	mg/kg/day	mg/kg/day	mg/day	unitless	days/year	years	unitless	years	kg
Perfluorooctane sulfonate (PFOS)	0.15	5.76E-03	1.86E-05	1.07E-07	50	1	365	29	1	29	70
Perfluorooctanoic acid (PFOA)	0.005	2.24E-05	1.59E-04	3.57E-09	50	1	365	29	1	29	70
Perfluorohexane sulfonate (PFHxS)	0.0087	3.11E-04	2.00E-05	6.21E-09	50	1	365	29	1	29	70
Perfluorohexanoic acid (PFHxA)	0.005	3.57E-08	1.00E-01	3.57E-09	50	1	365	29	1	29	70
Exposure Pathway Speci	ic Hazard Index	6.09E-03									

Inhalation of soil derived dust in outdoor air	in soli		(Background Adjusted)	Exposure Adjusted Air Concentration	(outdoors)	Emission Factor	Lung Retention Factor (RF)	Bioavailability	Exposure Time	Exposure Frequency	Exposure Duration	Averaging Time (non- carcinogens)	Body Weight
	mg/kg	unitless	mg/m3	mg/m3	mg/m3	m3/kg	unitless	unitless	hours/day	days/year	years	years	kg
Perfluorooctane sulfonate (PFOS)	0.15	4.62E-09	7.00E-05	3.23E-13	5.17E-12	2.90E+10	3.75E-01	1	4	365	29	29	70
Perfluorooctanoic acid (PFOA)	0.005	1.92E-11	5.60E-04	1.08E-14	1.72E-13	2.90E+10	3.75E-01	1	4	365	29	29	70
Perfluorohexane sulfonate (PFHxS)	0.0087	2.68E-10	7.00E-05	1.88E-14	3.00E-13	2.90E+10	3.75E-01	1	4	365	29	29	70
Perfluorohexanoic acid (PFHxA)	0.005	3.08E-14	3.50E-01	1.08E-14	1.72E-13	2.90E+10	3.75E-01	1	4	365	29	29	70
Exposure Pathway Specific	: Hazard Index	4.91E-09											

Inhalation of soil derived dust in indoor ai	Exposure Point Concentratio ir in Soil	ⁿ Hazard Quotient (HQ)	RfC (Background Adjusted)	Exposure Adjusted Air Concentration	Concentration in Air (indoors)	Particulate Emission Factor	Lung Retention Factor (RF)	Oral Bioavailability	Exposure Time	Exposure Frequency	Exposure Duration	Averaging Time (non- carcinogens)	Body Weight
	mg/kg	unitless	mg/m3	mg/m3	mg/m3	m3/kg	unitless	unitless	hours/day	days/year	years	years	kg
Perfluorooctane sulfonate (PFOS)	0.15	2.58E-05	7.00E-05	1.80E-09	5.77E-09	2.60E+07	3.75E-01	1	20	365	29	29	70
Perfluorooctanoic acid (PFOA)	0.005	1.07E-07	5.60E-04	6.01E-11	1.92E-10	2.60E+07	3.75E-01	1	20	365	29	29	70
Perfluorohexane sulfonate (PFHxS)	0.0087	1.49E-06	7.00E-05	1.05E-10	3.35E-10	2.60E+07	3.75E-01	1	20	365	29	29	70
Perfluorohexanoic acid (PFHxA)	0.005	1.72E-10	3.50E-01	6.01E-11	1.92E-10	2.60E+07	3.75E-01	1	20	365	29	29	70
Exposure Pathway Specifi	c Hazard Index	2.74E-05											

Ingestion of Home Grown Produce - Fruits and Vegetables	Exposure Point Concentratio in Soil	^{on} Hazard Quotient (HQ)	TDI (Background Adjusted)	Chronic Daily Intake (non- carcinogens)	Plant Intake Factor	Oral Bioavailability	Exposure Frequency	Exposure Duration	Fraction Ingested from Contaminated Source	Averaging Time (non- carcinogens)	Body Weight
and vegetables	mg/kg	unitless	mg/kg/day	mg/kg/day	kg/day	unitless	days/year	years	unitless	years	kg
Perfluorooctane sulfonate (PFOS)	0.15	1.84E-06	1.86E-05	3.42E-11	2.40E-02	1	365	29	0.1	29	70
Perfluorooctanoic acid (PFOA)	0.005	1.27E-09	1.59E-04	2.03E-13	1.42E-04	1	365	29	0.1	29	70
Perfluorohexane sulfonate (PFHxS)	0.0087	9.93E-08	2.00E-05	1.99E-12	1.39E-03	1	365	29	0.1	29	70
Perfluorohexanoic acid (PFHxA)	0.005	0.00E+00	1.00E-01	0.00E+00	0.00E+00	1	365	29	0.1	29	70
Exposure Pathway Specific	c Hazard Index	1.94E-06									

Hazard Index 6.12E-03

CHILD											
СоРС	Exposure Point Concentration in Soil	ⁿ Hazard Quotient (HQ)	TDI (Background Adjusted)	Chronic Daily Intake (non- carcinogens)	Ingestion Rate	Oral Bioavailability	Exposure Frequency	Exposure Duration	Fraction Ingested from Contaminated Source	Averaging Time (non- carcinogens)	Body Weight
Incidental Ingestion of Soil	mg/kg	unitless	mg/kg/day	mg/kg/day	mg/day	unitless	days/year	years	unitless	years	kg
Perfluorooctane sulfonate (PFOS)	0.15	5.38E-02	1.86E-05	1.00E-06	100	1	365	6	1	6	15
Perfluorooctanoic acid (PFOA)	0.005	2.09E-04	1.59E-04	3.33E-08	100	1	365	6	1	6	15
Perfluorohexane sulfonate (PFHxS)	0.0087	2.90E-03	2.00E-05	5.80E-08	100	1	365	6	1	6	15
Perfluorohexanoic acid (PFHxA)	0.005	3.33E-07	1.00E-01	3.33E-08	100	1	365	6	1	6	15
Exposure Pathway Speci	fic Hazard Index	5.69E-02									

Inhalation of soil derived dust in outdoor air	Exposure Point Concentratio in Soil	ⁿ Hazard Quotient (HQ)	RfC (Background Adjusted)	Exposure Adjusted Air Concentration	Concentration in Air (outdoors)	Particulate Emission Factor	Lung Retention Factor (RF)	Oral Bioavailability	Exposure Time	Exposure Frequency	Exposure Duration	Averaging Time (non- carcinogens)	Body Weight
	mg/kg	unitless	mg/m3	mg/m3	mg/m3	m3/kg	unitless	unitless	hours/day	days/year	years	years	kg
Perfluorooctane sulfonate (PFOS)	0.15	4.62E-09	7.00E-05	3.23E-13	5.17E-12	2.90E+10	3.75E-01	1	4	365	6	6	15
Perfluorooctanoic acid (PFOA)	0.005	1.92E-11	5.60E-04	1.08E-14	1.72E-13	2.90E+10	3.75E-01	1	4	365	6	6	15
Perfluorohexane sulfonate (PFHxS)	0.0087	2.68E-10	7.00E-05	1.88E-14	3.00E-13	2.90E+10	3.75E-01	1	4	365	6	6	15
Perfluorohexanoic acid (PFHxA)	0.005	3.08E-14	3.50E-01	1.08E-14	1.72E-13	2.90E+10	3.75E-01	1	4	365	6	6	15
Exposure Pathway Specifi	c Hazard Index	4.91E-09											

Inhalation of soil derived dust in indoor ai	Exposure Point Concentration in Soil	on Hazard Quotient (HQ)	RfC (Background Adjusted)	Exposure Adjusted Air Concentration	Concentration in Air (indoors)	Particulate Emission Factor	Lung Retention Factor (RF)	Oral Bioavailability	Exposure Time	Exposure Frequency	Exposure Duration	Averaging Time (non- carcinogens)	Body Weight
	mg/kg	unitless	mg/m3	mg/m3	mg/m3	m3/kg	unitless	unitless	hours/day	days/year	years	years	kg
Perfluorooctane sulfonate (PFOS)	0.15	2.58E-05	7.00E-05	1.80E-09	5.77E-09	2.60E+07	3.75E-01	1	20	365	6	6	15
Perfluorooctanoic acid (PFOA)	0.005	1.07E-07	5.60E-04	6.01E-11	1.92E-10	2.60E+07	3.75E-01	1	20	365	6	6	15
Perfluorohexane sulfonate (PFHxS)	0.0087	1.49E-06	7.00E-05	1.05E-10	3.35E-10	2.60E+07	3.75E-01	1	20	365	6	6	15
Perfluorohexanoic acid (PFHxA)	0.005	1.72E-10	3.50E-01	6.01E-11	1.92E-10	2.60E+07	3.75E-01	1	20	365	6	6	15
Exposure Pathway Specifi	c Hazard Index	2.74E-05											

Ingestion of Home Grown Produce - Fruits and Vegetables	Exposure Point Concentration in Soil	ⁿ Hazard Quotient (HQ)	TDI (Background Adjusted)	Chronic Daily Intake (non- carcinogens)	Plant Intake Factor	Oral Bioavailability	Exposure Frequency	Exposure Duration	Fraction Ingested from Contaminated Source	Averaging Time (non- carcinogens)	Body Weight
and vegetables	mg/kg	unitless	mg/kg/day	mg/kg/day	kg/day	unitless	days/year	years	unitless	years	kg
Perfluorooctane sulfonate (PFOS)	0.15	8.59E-06	1.86E-05	1.60E-10	2.40E-02	1	365	6	0.1	6	15
Perfluorooctanoic acid (PFOA)	0.005	5.94E-09	1.59E-04	9.45E-13	1.42E-04	1	365	6	0.1	6	15
Perfluorohexane sulfonate (PFHxS)	0.0087	4.63E-07	2.00E-05	9.27E-12	1.39E-03	1	365	6	0.1	6	15
Perfluorohexanoic acid (PFHxA)	0.005	0.00E+00	1.00E-01	0.00E+00	0.00E+00	1	365	6	0.1	6	15
Exposure Pathway Specifi	c Hazard Index	9.06E-06									

Hazard Index 5.69E-02

Exposure Parameters

			Recreational receptors	that use Tarro F	Reserve
General	units	Adult	Reference	Child	Reference
Body weight	kg	70	NEPC (2013)	15	NEPC (2013)
Exposure duration	yr	29	NEPC (2013)	6	NEPC (2013)
Averaging time (non-carcinogens)	yr	29	NEPC (2013)	6	NEPC (2013)

Incidental Water Ingestion					
Incidental ingestion rate	L/day	0.05	enHealth (2012) suggest the use of an average incidental water ingestion rate for adults of 25 mL/hr, the adopted ingestion rate assumes receptors will be conducting recreational activities at Tarro Reserve for up to two hours per day	0.1	enHealth (2012) suggest the use of an average incidental water ingestion rate of 50 mL/hr for children the adopted ingestion rate assumes receptors will be conducting recreational activities at Tarro Reserve for up to two hours per day
Exposure frequency for incidental water ingestion	days/yr	52	Professional judgement - assumes recreational receptors will conduct recreational activities at Tarro Reserve one day per week, or two days per week for half a year	52	Professional judgement - assumes recreational receptors will conduct recreational activities at Tarro Reserve one day per week, or two days per week for half a year

Risk Characterisation

Recreational receptors that use Tarro Reserve

ADULT											
Incidental Ingestion of Surface Water	Exposure Point Concentration in Water	Hazard Quotient (HQ)	TDI (Background Adjusted)	Chronic Daily Intake (non- carcinogens)	Ingestion Rate	Oral Bioavailability	Exposure Frequency	Exposure Duration	Fraction Ingested from Contaminated Source	Averaging Time (non- carcinogens)	- Body Weight
	mg/L	unitless	mg/kg/day	mg/kg/day	L/day	unitless	days/year	years	unitless	years	kg
Perfluorooctane sulfonate (PFOS)	0.0012	6.57E-03	1.86E-05	1.22E-07	0.05	1	52	29	1	29	70
Perfluorooctanoic acid (PFOA)	0.00004	2.56E-05	1.59E-04	4.07E-09	0.05	1	52	29	1	29	70
Perfluorohexane sulfonate (PFHxS)	0.00038	1.93E-03	2.00E-05	3.87E-08	0.05	1	52	29	1	29	70
Perfluorohexanoic acid (PFHxA)	0.00016	1.63E-07	1.00E-01	1.63E-08	0.05	1	52	29	1	29	70
Exposure Pathway Specific Hazard Index		8.52E-03									
Hazard Index		8.52E-03									

CHILD

Incidental Ingestion of Surface Water	Exposure Point Concentration in Water	Hazard Quotient (HQ)	TDI (Background Adjusted)	Chronic Daily Intake (non- carcinogens)	Ingestion Rate	Oral Bioavailability	Exposure Frequency	Exposure Duration	Fraction Ingested from Contaminated Source	Averaging Time (non- carcinogens)	Body Weight
	mg/L	unitless	mg/kg/day	mg/kg/day	mg/day	unitless	days/year	years	unitless	years	kg
Perfluorooctane sulfonate (PFOS)	0.0012	6.13E-02	1.86E-05	1.14E-06	0.1	1	52	6	1	6	15
Perfluorooctanoic acid (PFOA)	0.00004	2.39E-04	1.59E-04	3.80E-08	0.1	1	52	6	1	6	15
Perfluorohexane sulfonate (PFHxS)	0.00038	1.80E-02	2.00E-05	3.61E-07	0.1	1	52	6	1	6	15
Perfluorohexanoic acid (PFHxA)	0.00016	1.52E-06	1.00E-01	1.52E-07	0.1	1	52	6	1	6	15
Exposure Pathway Specific Hazard Index		7.96E-02									
Hazard Index		7.96E-02									

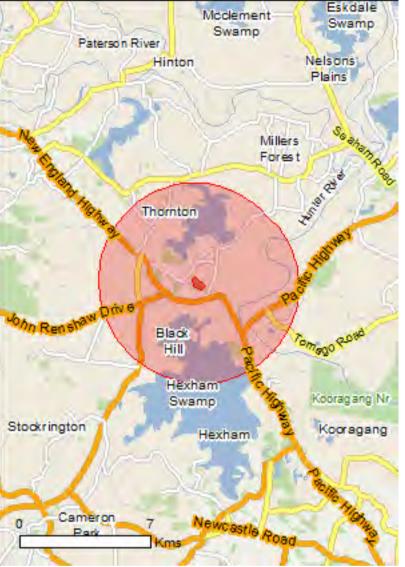
Hazard Index

SOLUTIONS FOR COMPLEX PROJECTS

Appendix C – Protected Matter Search Tool Output 🖄 Australian Government

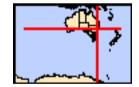
Department of the Environment and Energy

EPBC Act Protected Matters Report


This report provides general guidance on matters of national environmental significance and other matters protected by the EPBC Act in the area you have selected.

Information on the coverage of this report and qualifications on data supporting this report are contained in the caveat at the end of the report.

Information is available about <u>Environment Assessments</u> and the EPBC Act including significance guidelines, forms and application process details.


Report created: 04/03/20 12:09:45

Summary Details Matters of NES Other Matters Protected by the EPBC Act Extra Information Caveat Acknowledgements

This map may contain data which are ©Commonwealth of Australia (Geoscience Australia), ©PSMA 2010

Coordinates Buffer: 5.0Km

Summary

Matters of National Environmental Significance

This part of the report summarises the matters of national environmental significance that may occur in, or may relate to, the area you nominated. Further information is available in the detail part of the report, which can be accessed by scrolling or following the links below. If you are proposing to undertake an activity that may have a significant impact on one or more matters of national environmental significance then you should consider the <u>Administrative Guidelines on Significance</u>.

World Heritage Properties:	None
National Heritage Places:	None
Wetlands of International Importance:	1
Great Barrier Reef Marine Park:	None
Commonwealth Marine Area:	None
Listed Threatened Ecological Communities:	4
Listed Threatened Species:	65
Listed Migratory Species:	55

Other Matters Protected by the EPBC Act

This part of the report summarises other matters protected under the Act that may relate to the area you nominated. Approval may be required for a proposed activity that significantly affects the environment on Commonwealth land, when the action is outside the Commonwealth land, or the environment anywhere when the action is taken on Commonwealth land. Approval may also be required for the Commonwealth or Commonwealth agencies proposing to take an action that is likely to have a significant impact on the environment anywhere.

The EPBC Act protects the environment on Commonwealth land, the environment from the actions taken on Commonwealth land, and the environment from actions taken by Commonwealth agencies. As heritage values of a place are part of the 'environment', these aspects of the EPBC Act protect the Commonwealth Heritage values of a Commonwealth Heritage place. Information on the new heritage laws can be found at http://www.environment.gov.au/heritage

A <u>permit</u> may be required for activities in or on a Commonwealth area that may affect a member of a listed threatened species or ecological community, a member of a listed migratory species, whales and other cetaceans, or a member of a listed marine species.

Commonwealth Land:	3
Commonwealth Heritage Places:	None
Listed Marine Species:	64
Whales and Other Cetaceans:	1
Critical Habitats:	None
Commonwealth Reserves Terrestrial:	None
Australian Marine Parks:	None

Extra Information

This part of the report provides information that may also be relevant to the area you have nominated.

State and Territory Reserves:	2
Regional Forest Agreements:	1
Invasive Species:	45
Nationally Important Wetlands:	3
Key Ecological Features (Marine)	None

Details

Matters of National Environmental Significance

Wetlands of International Importance (Ramsar)	[Resource Information]
Name	Proximity
Hunter estuary wetlands	Within 10km of Ramsar

Listed Threatened Ecological Communities

For threatened ecological communities where the distribution is well known, maps are derived from recovery plans, State vegetation maps, remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Name	Status	Type of Presence
Central Hunter Valley eucalypt forest and woodland	Critically Endangered	Community may occur within area
Coastal Swamp Oak (Casuarina glauca) Forest of New South Wales and South East Queensland ecological	Endangered	Community likely to occur within area
community		
Lowland Rainforest of Subtropical Australia	Critically Endangered	Community may occur within area
Subtropical and Temperate Coastal Saltmarsh	Vulnerable	Community likely to occur within area
Listed Threatened Species		[Resource Information]
Name	Status	Type of Presence
Birds		
Anthochaera phrygia		
Regent Honeyeater [82338]	Critically Endangered	Foraging, feeding or related behaviour likely to occur within area
Botaurus poiciloptilus	_	
Australasian Bittern [1001]	Endangered	Species or species habitat known to occur within area
Calidris ferruginea		
Curlew Sandpiper [856]	Critically Endangered	Species or species habitat known to occur within area
Calidris tenuirostris		
Great Knot [862]	Critically Endangered	Species or species habitat

[Resource Information]

Charadrius leschenaultii Greater Sand Plover, Large Sand Plover [877]	Vulnerable	Species or species habitat known to occur within area
<u>Charadrius mongolus</u> Lesser Sand Plover, Mongolian Plover [879]	Endangered	Species or species habitat known to occur within area
Dasyornis brachypterus Eastern Bristlebird [533]	Endangered	Species or species habitat may occur within area
Diomedea antipodensis Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Diomedea antipodensis gibsoni</u> Gibson's Albatross [82270]	Vulnerable	Foraging, feeding or

Name	Status	Type of Presence
		related behaviour likely to occur within area
Diomedea epomophora		
Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Diomedea exulans	Vulnarabla	Foreging feeding or related
Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Diomedea sanfordi	En den mened	For a size of the state of the state of
Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related behaviour likely to occur within area
Erythrotriorchis radiatus	Vulnerable	Spacios or spacios habitat
Red Goshawk [942]	vunerable	Species or species habitat likely to occur within area
<u>Grantiella picta</u>		
Painted Honeyeater [470]	Vulnerable	Species or species habitat may occur within area
Hirundapus caudacutus		
White-throated Needletail [682]	Vulnerable	Species or species habitat known to occur within area
Lathamus discolor		
Swift Parrot [744]	Critically Endangered	Species or species habitat likely to occur within area
Limosa lapponica baueri		
Bar-tailed Godwit (baueri), Western Alaskan Bar-tailed Godwit [86380]	Vulnerable	Species or species habitat known to occur within area
Limosa lapponica menzbieri		
Northern Siberian Bar-tailed Godwit, Bar-tailed Godwit (menzbieri) [86432]	Critically Endangered	Species or species habitat may occur within area
Macronectes giganteus		
Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area
Macronectes halli		
Northern Giant Petrel [1061]	Vulnerable	Species or species habitat may occur within area

Numenius madagascariensis Eastern Curlew, Far Eastern Curlew [847] Species or species habitat **Critically Endangered** known to occur within area Pachyptila turtur subantarctica Fairy Prion (southern) [64445] Species or species habitat Vulnerable likely to occur within area Rostratula australis Australian Painted Snipe [77037] Endangered Species or species habitat known to occur within area Sternula nereis nereis Australian Fairy Tern [82950] Species or species habitat Vulnerable may occur within area Thalassarche bulleri Buller's Albatross, Pacific Albatross [64460] Vulnerable Species or species habitat may occur within area Thalassarche bulleri platei Northern Buller's Albatross, Pacific Albatross [82273] Vulnerable Species or species habitat may occur within area Thalassarche cauta cauta Shy Albatross [82345] Vulnerable

Foraging, feeding or related behaviour likely

Name	Status	Type of Presence
		to occur within area
Thalassarche cauta steadi		
White-capped Albatross [82344]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Thalassarche eremita		
Chatham Albatross [64457]	Endangered	Foraging, feeding or related behaviour likely to occur within area
Thalassarche impavida		.
Campbell Albatross, Campbell Black-browed Albatross [64459]	Vulnerable	Species or species habitat may occur within area
Thalassarche melanophris		
Black-browed Albatross [66472]	Vulnerable	Species or species habitat may occur within area
Thalassarche salvini		
Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Thinornis rubricollis rubricollis		
Hooded Plover (eastern) [66726]	Vulnerable	Species or species habitat may occur within area
Fish		
Epinephelus daemelii		
Black Rockcod, Black Cod, Saddled Rockcod [68449]	Vulnerable	Species or species habitat likely to occur within area
Frogs		
Heleioporus australiacus		
Giant Burrowing Frog [1973]	Vulnerable	Species or species habitat may occur within area
Litoria aurea		
Green and Golden Bell Frog [1870]	Vulnerable	Species or species habitat known to occur within area
Insects		
Synemon plana		
Golden Sun Moth [25234]	Critically Endangered	Species or species habitat may occur within area
Mammals		
Ohalia alahasa akunani		

Chalinolobus dwyeri Large-eared Pied Bat, Large Pied Bat [183]

Vulnerable

Species or species habitat known to occur within area

Dasyurus maculatus maculatus (SE mainland population)			
Spot-tailed Quoll, Spotted-tail Quoll, Tiger Quoll (southeastern mainland population) [75184]	Endangered	Species or species habitat likely to occur within area	
Petauroides volans			
Greater Glider [254]	Vulnerable	Species or species habitat likely to occur within area	
Petrogale penicillata			
Brush-tailed Rock-wallaby [225]	Vulnerable	Species or species habitat may occur within area	
Phascolarctos cinereus (combined populations of Qld, N	<u>ISW and the ACT)</u>		
Koala (combined populations of Queensland, New South Wales and the Australian Capital Territory) [85104]	Vulnerable	Species or species habitat known to occur within area	
Potorous tridactylus tridactylus			
Long-nosed Potoroo (SE Mainland) [66645]	Vulnerable	Species or species habitat may occur within area	
Pseudomys novaehollandiae			
New Holland Mouse, Pookila [96]	Vulnerable	Species or species habitat known to occur within area	

Name	Status	Type of Presence
Pteropus poliocephalus Grey-headed Flying-fox [186]	Vulnerable	Foraging, feeding or related behaviour known to occur within area
Plants Angenhere inepine		
<u>Angophora inopina</u> Charmhaven Apple [64832]	Vulnerable	Species or species habitat may occur within area
Caladenia tessellata Thick-lipped Spider-orchid, Daddy Long-legs [2119]	Vulnerable	Species or species habitat may occur within area
Commersonia prostrata Dwarf Kerrawang [87152]	Endangered	Species or species habitat likely to occur within area
Cryptostylis hunteriana Leafless Tongue-orchid [19533]	Vulnerable	Species or species habitat may occur within area
<u>Cynanchum elegans</u> White-flowered Wax Plant [12533]	Endangered	Species or species habitat known to occur within area
Eucalyptus parramattensis subsp. decadens Earp's Gum, Earp's Dirty Gum [56148]	Vulnerable	Species or species habitat likely to occur within area
<u>Grevillea parviflora subsp. parviflora</u> Small-flower Grevillea [64910]	Vulnerable	Species or species habitat likely to occur within area
<u>Melaleuca biconvexa</u> Biconvex Paperbark [5583]	Vulnerable	Species or species habitat may occur within area
<u>Persicaria elatior</u> Knotweed, Tall Knotweed [5831]	Vulnerable	Species or species habitat likely to occur within area
Phaius australis Lesser Swamp-orchid [5872]	Endangered	Species or species habitat may occur within area
Prasophyllum sp. Wybong (C.Phelps ORG 5269) a leek-orchid [81964]	Critically Endangered	Species or species habitat may occur within area
Pterostylis gibbosa Illawarra Greenhood, Rufa Greenhood, Pouched Greenhood [4562]	Endangered	Species or species habitat may occur within area
<u>Rutidosis heterogama</u> Heath Wrinklewort [13132]	Vulnerable	Species or species habitat likely to occur within area
<u>Syzygium paniculatum</u> Magenta Lilly Pilly, Magenta Cherry, Daguba, Scrub Cherry, Creek Lilly Pilly, Brush Cherry [20307]	Vulnerable	Species or species habitat likely to occur within area
<u>Tetratheca juncea</u> Black-eyed Susan [21407]	Vulnerable	Species or species habitat likely to occur within area
Reptiles		
Caretta caretta Loggerhead Turtle [1763]	Endangered	Species or species habitat known to occur within area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Species or species habitat known to occur

Name	Status	Type of Presence
Dermeschelter en vieren		within area
Dermochelys coriacea Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Species or species habitat known to occur within area
Eretmochelys imbricata		
Hawksbill Turtle [1766]	Vulnerable	Species or species habitat known to occur within area
Natator depressus		
Flatback Turtle [59257]	Vulnerable	Species or species habitat known to occur within area
Listed Migratory Species		[Resource Information]
* Species is listed under a different scientific name on	the EPBC Act - Threatened	•
Name	Threatened	Type of Presence
Migratory Marine Birds		
Apus pacificus		
Fork-tailed Swift [678]		Species or species habitat likely to occur within area
Ardenna grisea		
Sooty Shearwater [82651]		Species or species habitat likely to occur within area
Calonectris leucomelas		
Streaked Shearwater [1077]		Species or species habitat known to occur within area
Diomedea antipodensis		
Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Diomedea epomophora		
Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Diomedea exulans		
Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Diomedea sanfordi		
Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related behaviour likely to occur within area

Macronectes giganteus		within area
Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area
Macronectes halli		
Northern Giant Petrel [1061]	Vulnerable	Species or species habitat may occur within area
Thalassarche bulleri		
Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Species or species habitat may occur within area
Thalassarche cauta		
Shy Albatross [89224]	Vulnerable*	Foraging, feeding or related behaviour likely to occur within area
Thalassarche eremita		
Chatham Albatross [64457]	Endangered	Foraging, feeding or related behaviour likely to occur within area
Thalassarche impavida Campbell Albatross, Campbell Black-browed Albatross	Vulnerable	Species or species habitat
[64459]	Vullierable	may occur within area
Thalassarche melanophris		
Black-browed Albatross [66472]	Vulnerable	Species or species habitat may occur within

Name	Threatened	Type of Presence
		area
Thalassarche salvini		Foreging fooding or related
Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Thalassarche steadi	V/l.a.a.a.b.l.a.*	Fananian faadima an malatad
White-capped Albatross [64462]	Vulnerable*	Foraging, feeding or related behaviour likely to occur within area
Migratory Marine Species		
Caretta caretta	Fodoogorod	Chapies or chapies hebitat
Loggerhead Turtle [1763]	Endangered	Species or species habitat known to occur within area
<u>Chelonia mydas</u>		
Green Turtle [1765]	Vulnerable	Species or species habitat known to occur within area
		KHOWH to occur within area
Dermochelys coriacea		
Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Species or species habitat
		known to occur within area
Eretmochelys imbricata		
Hawksbill Turtle [1766]	Vulnerable	Species or species habitat known to occur within area
		KIIOWII IO OCCUI WILIIII AIEA
Manta alfredi		
Reef Manta Ray, Coastal Manta Ray, Inshore Manta Ray, Prince Alfred's Ray, Resident Manta Ray [84994]		Species or species habitat
Ray, Fince Aneu's Ray, Resident Manta Ray [04994]		may occur within area
Manta birostris		
Giant Manta Ray, Chevron Manta Ray, Pacific Manta Ray, Palagia Manta Ray, Oceania Manta Ray [84005]		Species or species habitat
Ray, Pelagic Manta Ray, Oceanic Manta Ray [84995]		may occur within area
Natator depressus		
Flatback Turtle [59257]	Vulnerable	Species or species habitat known to occur within area
		KIOWIT IO OCCUT WITHIT ATEA
Sousa chinensis		
Indo-Pacific Humpback Dolphin [50]		Species or species habitat likely to occur within area
		intery to occur within alea
Migratory Terrestrial Species		
Cuculus optatus Oriental Cuckoa, Harsfield's Cuckoa [86651]		Spacios or spacios habitat
Oriental Cuckoo, Horsfield's Cuckoo [86651]		Species or species habitat

Hirundapus caudacutus White-throated Needletail [682]

Monarcha melanopsis Black-faced Monarch [609]

Monarcha trivirgatus Spectacled Monarch [610]

Motacilla flava Yellow Wagtail [644]

Myiagra cyanoleuca Satin Flycatcher [612]

Rhipidura rufifrons Rufous Fantail [592] Vulnerable

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Species or species habitat may occur within area

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Migratory Wetlands Species

Nomo	Threatened	Turne of Dressnos
Name Actitic humeleusee	Threatened	Type of Presence
<u>Actitis hypoleucos</u> Common Sandpiper [59309]		Species or species habitat known to occur within area
Arenaria interpres Ruddy Turnstone [872]		Species or species habitat known to occur within area
Calidris acuminata Sharp-tailed Sandpiper [874]		Species or species habitat known to occur within area
<u>Calidris ferruginea</u> Curlew Sandpiper [856]	Critically Endangered	Species or species habitat known to occur within area
<u>Calidris melanotos</u> Pectoral Sandpiper [858]		Species or species habitat known to occur within area
<u>Calidris ruficollis</u> Red-necked Stint [860]		Species or species habitat known to occur within area
Calidris tenuirostris Great Knot [862]	Critically Endangered	Species or species habitat known to occur within area
<u>Charadrius bicinctus</u> Double-banded Plover [895]		Species or species habitat known to occur within area
Charadrius leschenaultii Greater Sand Plover, Large Sand Plover [877]	Vulnerable	Species or species habitat known to occur within area
<u>Charadrius mongolus</u> Lesser Sand Plover, Mongolian Plover [879]	Endangered	Species or species habitat known to occur within area
<u>Gallinago hardwickii</u> Latham's Snipe, Japanese Snipe [863]		Species or species habitat known to occur within area
<u>Limicola falcinellus</u> Broad-billed Sandpiper [842]		Species or species habitat

bioau-billeu Saliupipei [042]

Limosa lapponica Bar-tailed Godwit [844]

Limosa limosa Black-tailed Godwit [845]

Numenius madagascariensis Eastern Curlew, Far Eastern Curlew [847]

Numenius phaeopus Whimbrel [849]

Pandion haliaetus Osprey [952]

Philomachus pugnax Ruff (Reeve) [850] known to occur within area

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Critically Endangered

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Name	Threatened	Type of Presence
<u>Pluvialis fulva</u>		
Pacific Golden Plover [25545]		Species or species habitat known to occur within area
Pluvialis squatarola		
Grey Plover [865]		Species or species habitat known to occur within area
<u>Tringa brevipes</u>		
Grey-tailed Tattler [851]		Species or species habitat known to occur within area
Tringa nebularia		
Common Greenshank, Greenshank [832]		Species or species habitat known to occur within area
Tringa stagnatilis		
Marsh Sandpiper, Little Greenshank [833]		Species or species habitat known to occur within area
Xenus cinereus		
Terek Sandpiper [59300]		Species or species habitat known to occur within area
Other Matters Protected by the EPBC	Act	
Commonwealth Land		[Resource Information]
The Commonwealth area listed below may indicate the presence of Commonwealth land in this vicinity. Due to the unreliability of the data source, all proposals should be checked as to whether it impacts on a Commonwealth area, before making a definitive decision. Contact the State or Territory government land department for further information.		
Name		
Commonwealth Land - Australian Telecommun Commonwealth Land - Director of Defence Ser Commonwealth Land - Director of War Service	vice Homes	

Listed Marine Species		[Resource Information]
* Species is listed under a different scientific name o	n the EPBC Act - Threa	atened Species list.
Name	Threatened	Type of Presence
Birds		
Actitis hypoleucos		
Common Sandpiper [59309]		Species or species habitat

Species or species habitat known to occur within area

Apus pacificus Fork-tailed Swift [678]

Ardea alba Great Egret, White Egret [59541]

Ardea ibis Cattle Egret [59542]

<u>Arenaria interpres</u> Ruddy Turnstone [872]

Calidris acuminata Sharp-tailed Sandpiper [874]

Calidris ferruginea Curlew Sandpiper [856]

Calidris melanotos Pectoral Sandpiper [858] Species or species habitat likely to occur within area

Breeding known to occur within area

Breeding likely to occur within area

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Critically Endangered

Species or species habitat known to occur within area

Species or species

Name	Threatened	Type of Presence
		habitat known to occur within area
Calidris ruficollis		
Red-necked Stint [860]		Species or species habitat
		known to occur within area
Calidris tenuirostris		
Great Knot [862]	Critically Endangered	Species or species habitat known to occur within area
Calonectris leucomelas Streaked Shearwater [1077]		Species or species habitat
		known to occur within area
Charadrius bicinctus		
Double-banded Plover [895]		Species or species habitat
		known to occur within area
Charadrius leschenaultii		
Greater Sand Plover, Large Sand Plover [877]	Vulnerable	Species or species habitat
		known to occur within area
Charadrius mongolus	–	
Lesser Sand Plover, Mongolian Plover [879]	Endangered	Species or species habitat known to occur within area
<u>Charadrius ruficapillus</u> Red-capped Plover [881]		Species or species habitat
		known to occur within area
Diomedea antipodensis		
Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related
		behaviour likely to occur within area
Diomedea epomophora		
Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur
		within area
Diomedea exulans	Vulnarabla	Foraging fooding or volated
Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur
Diamadaa dibsani		within area
<u>Diomedea gibsoni</u> Gibson's Albatross [64466]	Vulnerable*	Foraging, feeding or related
		behaviour likely to occur
Diamandan ang famili		within area

Diomedea sanfordi Northern Royal Albatross [64456]

Gallinago hardwickii Latham's Snipe, Japanese Snipe [863]

Haliaeetus leucogaster White-bellied Sea-Eagle [943]

<u>Heteroscelus brevipes</u> Grey-tailed Tattler [59311]

Himantopus himantopus Pied Stilt, Black-winged Stilt [870]

Hirundapus caudacutus White-throated Needletail [682]

Lathamus discolor Swift Parrot [744] Endangered

Foraging, feeding or related behaviour likely to occur within area

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Vulnerable

Species or species habitat known to occur within area

Critically Endangered

Species or species habitat likely to occur

Name	Threatened	Type of Presence
		within area
Limicola falcinellus Broad-billed Sandpiper [842]		Species or species habitat known to occur within area
Limosa lapponica		
Bar-tailed Godwit [844]		Species or species habitat known to occur within area
Limosa limosa		
Black-tailed Godwit [845]		Species or species habitat known to occur within area
Macronectes giganteus		
Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area
Macronectes halli		
Northern Giant Petrel [1061]	Vulnerable	Species or species habitat may occur within area
Merops ornatus		
Rainbow Bee-eater [670]		Species or species habitat may occur within area
Monarcha melanopsis		
Black-faced Monarch [609]		Species or species habitat known to occur within area
Monarcha trivirgatus		
Spectacled Monarch [610]		Species or species habitat may occur within area
Motacilla flava		
Yellow Wagtail [644]		Species or species habitat known to occur within area
Myiagra cyanoleuca		
Satin Flycatcher [612]		Species or species habitat known to occur within area
Numenius madagascariensis		
Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat known to occur within area

Numenius phaeopus Whimbrel [849]

Pachyptila turtur Fairy Prion [1066]

Pandion haliaetus Osprey [952]

Philomachus pugnax Ruff (Reeve) [850]

Pluvialis fulva Pacific Golden Plover [25545]

Pluvialis squatarola Grey Plover [865]

Puffinus griseus Sooty Shearwater [1024] Species or species habitat known to occur within area

Species or species habitat likely to occur within area

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Species or species habitat likely to occur within area

Name	Threatened	Type of Presence
Recurvirostra novaehollandiae		
Red-necked Avocet [871]		Species or species habitat known to occur within area
Rhipidura rufifrons		
Rufous Fantail [592]		Species or species habitat known to occur within area
Rostratula benghalensis (sensu lato)		
Painted Snipe [889]	Endangered*	Species or species habitat known to occur within area
Thalassarche bulleri		
Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Species or species habitat may occur within area
Thalassarche cauta		
Shy Albatross [89224]	Vulnerable*	Foraging, feeding or related behaviour likely to occur within area
Thalassarche eremita	Endangered	Earaging, fooding or related
Chatham Albatross [64457]	Endangered	Foraging, feeding or related behaviour likely to occur within area
Thalassarche impavida	Vulnorable	Spaciae or spaciae habitat
Campbell Albatross, Campbell Black-browed Albatross [64459]	Vullerable	Species or species habitat may occur within area
Thalassarche melanophris		
Black-browed Albatross [66472]	Vulnerable	Species or species habitat may occur within area
Thalassarche salvini		
Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Thalassarche sp. nov.		
Pacific Albatross [66511]	Vulnerable*	Species or species habitat may occur within area
Thalassarche steadi	X / 1 · · · ·	— • • • • • • • • • •
White-capped Albatross [64462]	Vulnerable*	Foraging, feeding or related behaviour likely to occur within area
<u>Thinornis rubricollis</u> Hooded Plover (eastern) [66726]	Vulnerable	Species or species habitat

Tringa nebularia Common Greenshank, Greenshank [832]

Tringa stagnatilis Marsh Sandpiper, Little Greenshank [833]

Xenus cinereus Terek Sandpiper [59300] may occur within area

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Reptiles		
Caretta caretta		
Loggerhead Turtle [1763]	Endangered	Species or species habitat known to occur within area
<u>Chelonia mydas</u>		
Green Turtle [1765]	Vulnerable	Species or species habitat known to occur within area
Dermochelys coriacea		
Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Species or species habitat known to occur within area

Name	Threatened	Type of Presence
Eretmochelys imbricata Hawksbill Turtle [1766]	Vulnerable	Species or species habitat known to occur within area
Natator depressus Flatback Turtle [59257]	Vulnerable	Species or species habitat known to occur within area
Whales and other Cetaceans		[Resource Information]
Name	Status	Type of Presence
Mammals		
<u>Sousa chinensis</u> Indo-Pacific Humpback Dolphin [50]		Species or species habitat likely to occur within area
Extra Information		
State and Territory Reserves		[Resource Information]
Name		State
Hexham Swamp Hunter Wetlands		NSW NSW
Regional Forest Agreements		[Resource Information]
Note that all areas with completed RFAs have been in	cluded.	
Name		State
North East NSW RFA		New South Wales
Invasive Species		[Resource Information]
Weeds reported here are the 20 species of national significance (WoNS), along with other introduced plants that are considered by the States and Territories to pose a particularly significant threat to biodiversity. The following feral animals are reported: Goat, Red Fox, Cat, Rabbit, Pig, Water Buffalo and Cane Toad. Maps from Landscape Health Project, National Land and Water Resouces Audit, 2001.		
Name	Status	Type of Presence
Birds		
Acridotheres tristis		
Common Myna, Indian Myna [387]		Species or species habitat likely to occur within area

Alauda arvensis Skylark [656]

Species or species habitat

likely to occur within area

Anas platyrhynchos Mallard [974]

Carduelis carduelis European Goldfinch [403]

Columba livia Rock Pigeon, Rock Dove, Domestic Pigeon [803]

Lonchura punctulata Nutmeg Mannikin [399]

Passer domesticus House Sparrow [405]

Passer montanus Eurasian Tree Sparrow [406] Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Name	Status	Type of Presence
Pycnonotus jocosus		
Red-whiskered Bulbul [631]		Species or species habitat likely to occur within area
Streptopelia chinensis		
Spotted Turtle-Dove [780]		Species or species habitat likely to occur within area
Sturnus vulgaris		
Common Starling [389]		Species or species habitat likely to occur within area
Turdus merula		
Common Blackbird, Eurasian Blackbird [596]		Species or species habitat likely to occur within area
Frogs		
Rhinella marina		
Cane Toad [83218]		Species or species habitat known to occur within area
Mammals		
Bos taurus		
Domestic Cattle [16]		Species or species habitat likely to occur within area
Canis lupus familiaris		
Domestic Dog [82654]		Species or species habitat likely to occur within area
Felis catus		
Cat, House Cat, Domestic Cat [19]		Species or species habitat likely to occur within area
Feral deer		
Feral deer species in Australia [85733]		Species or species habitat likely to occur within area
Lepus capensis		
Brown Hare [127]		Species or species habitat likely to occur within area

Mus musculus House Mouse [120]

Species or species habitat likely to occur within area

Oryctolagus cuniculus Rabbit, European Rabbit [128]

Rattus norvegicus Brown Rat, Norway Rat [83]

Rattus rattus Black Rat, Ship Rat [84]

Vulpes vulpes Red Fox, Fox [18]

Plants

Alternanthera philoxeroides Alligator Weed [11620]

Anredera cordifolia Madeira Vine, Jalap, Lamb's-tail, Mignonette Vine, Anredera, Gulf Madeiravine, Heartleaf Madeiravine, Potato Vine [2643] Asparagus aethiopicus Asparagus Fern, Ground Asparagus, Basket Fern, Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species

Name	Status	Type of Presence
Sprengi's Fern, Bushy Asparagus, Emerald Asparagus [62425]		habitat likely to occur within area
Asparagus asparagoides		
Bridal Creeper, Bridal Veil Creeper, Smilax, Florist's		Species or species habitat
Smilax, Smilax Asparagus [22473]		likely to occur within area
Asparagus plumosus		
Climbing Asparagus-fern [48993]		Species or species habitat likely to occur within area
Cabomba caroliniana		
Cabomba, Fanwort, Carolina Watershield, Fish Grass, Washington Grass, Watershield, Carolina Fanwort, Common Cabomba [5171] Chrysanthemoides monilifera		Species or species habitat likely to occur within area
Bitou Bush, Boneseed [18983]		Species or species habitat may occur within area
Chrysanthemoides monilifera subsp. rotundata		
Bitou Bush [16332]		Species or species habitat likely to occur within area
Cytisus scoparius		
Broom, English Broom, Scotch Broom, Common		Species or species habitat
Broom, Scottish Broom, Spanish Broom [5934]		likely to occur within area
Dolichandra unguis-cati		
Cat's Claw Vine, Yellow Trumpet Vine, Cat's Claw Creeper, Funnel Creeper [85119]		Species or species habitat likely to occur within area
Eichhornia crassipes		
Water Hyacinth, Water Orchid, Nile Lily [13466]		Species or species habitat likely to occur within area
Genista monspessulana		
Montpellier Broom, Cape Broom, Canary Broom,		Species or species habitat
Common Broom, French Broom, Soft Broom [20126]		likely to occur within area
Genista sp. X Genista monspessulana		
Broom [67538]		Species or species habitat may occur within area
Lantana camara		
Lantana, Common Lantana, Kamara Lantana, Large-		Species or species habitat

leaf Lantana, Pink Flowered Lantana, Red Flowered Lantana, Red-Flowered Sage, White Sage, Wild Sage

likely to occur within area

[10892] Opuntia spp. Prickly Pears [82753]

Pinus radiata Radiata Pine Monterey Pine, Insignis Pine, Wilding Pine [20780]

Rubus fruticosus aggregate Blackberry, European Blackberry [68406]

Sagittaria platyphylla Delta Arrowhead, Arrowhead, Slender Arrowhead [68483]

Salix spp. except S.babylonica, S.x calodendron & S.x reichardtii Willows except Weeping Willow, Pussy Willow and Sterile Pussy Willow [68497]

Salvinia molesta Salvinia, Giant Salvinia, Aquarium Watermoss, Kariba Weed [13665]

Senecio madagascariensis Fireweed, Madagascar Ragwort, Madagascar Species or species habitat likely to occur within area

Species or species habitat may occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species

Name Groundsel [2624] Solanum elaeagnifolium Silver Nightshade, Silver-leaved Nightshade, White Horse Nettle, Silver-leaf Nightshade, Tomato Weed, White Nightshade, Bull-nettle, Prairie-berry, Satansbos, Silver-leaf Bitter-apple, Silverleaf-nettle, Trompillo [12323]	Status	 Type of Presence habitat likely to occur within area Species or species habitat likely to occur within area
Nationally Important Wetlands Name		[Resource Information] State

NSW

NSW

NSW

Hexham Swamp

Kooragang Nature Reserve

Shortland Wetlands Centre

Caveat

The information presented in this report has been provided by a range of data sources as acknowledged at the end of the report.

This report is designed to assist in identifying the locations of places which may be relevant in determining obligations under the Environment Protection and Biodiversity Conservation Act 1999. It holds mapped locations of World and National Heritage properties, Wetlands of International and National Importance, Commonwealth and State/Territory reserves, listed threatened, migratory and marine species and listed threatened ecological communities. Mapping of Commonwealth land is not complete at this stage. Maps have been collated from a range of sources at various resolutions.

Not all species listed under the EPBC Act have been mapped (see below) and therefore a report is a general guide only. Where available data supports mapping, the type of presence that can be determined from the data is indicated in general terms. People using this information in making a referral may need to consider the qualifications below and may need to seek and consider other information sources.

For threatened ecological communities where the distribution is well known, maps are derived from recovery plans, State vegetation maps, remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Threatened, migratory and marine species distributions have been derived through a variety of methods. Where distributions are well known and if time permits, maps are derived using either thematic spatial data (i.e. vegetation, soils, geology, elevation, aspect, terrain, etc) together with point locations and described habitat; or environmental modelling (MAXENT or BIOCLIM habitat modelling) using point locations and environmental data layers.

Where very little information is available for species or large number of maps are required in a short time-frame, maps are derived either from 0.04 or 0.02 decimal degree cells; by an automated process using polygon capture techniques (static two kilometre grid cells, alpha-hull and convex hull); or captured manually or by using topographic features (national park boundaries, islands, etc). In the early stages of the distribution mapping process (1999-early 2000s) distributions were defined by degree blocks, 100K or 250K map sheets to rapidly create distribution maps. More reliable distribution mapping methods are used to update these distributions as time permits.

Only selected species covered by the following provisions of the EPBC Act have been mapped:

- migratory and
- marine

The following species and ecological communities have not been mapped and do not appear in reports produced from this database:

- threatened species listed as extinct or considered as vagrants
- some species and ecological communities that have only recently been listed
- some terrestrial species that overfly the Commonwealth marine area
- migratory species that are very widespread, vagrant, or only occur in small numbers

The following groups have been mapped, but may not cover the complete distribution of the species:

- non-threatened seabirds which have only been mapped for recorded breeding sites
- seals which have only been mapped for breeding sites near the Australian continent

Such breeding sites may be important for the protection of the Commonwealth Marine environment.

Coordinates

-32.802513 151.661302,-32.806337 151.666237,-32.807888 151.664477,-32.806373 151.66083,-32.803812 151.660014,-32.802549 151.661302,-32.802513 151.661302

Acknowledgements

This database has been compiled from a range of data sources. The department acknowledges the following custodians who have contributed valuable data and advice:

-Office of Environment and Heritage, New South Wales -Department of Environment and Primary Industries, Victoria -Department of Primary Industries, Parks, Water and Environment, Tasmania -Department of Environment, Water and Natural Resources, South Australia -Department of Land and Resource Management, Northern Territory -Department of Environmental and Heritage Protection, Queensland -Department of Parks and Wildlife, Western Australia -Environment and Planning Directorate, ACT -Birdlife Australia -Australian Bird and Bat Banding Scheme -Australian National Wildlife Collection -Natural history museums of Australia -Museum Victoria -Australian Museum -South Australian Museum -Queensland Museum -Online Zoological Collections of Australian Museums -Queensland Herbarium -National Herbarium of NSW -Royal Botanic Gardens and National Herbarium of Victoria -Tasmanian Herbarium -State Herbarium of South Australia -Northern Territory Herbarium -Western Australian Herbarium -Australian National Herbarium, Canberra -University of New England -Ocean Biogeographic Information System -Australian Government, Department of Defence Forestry Corporation, NSW -Geoscience Australia -CSIRO -Australian Tropical Herbarium, Cairns -eBird Australia -Australian Government – Australian Antarctic Data Centre -Museum and Art Gallery of the Northern Territory -Australian Government National Environmental Science Program

-Australian Government National Environmental Scien

-Australian Institute of Marine Science

-Reef Life Survey Australia

-American Museum of Natural History

-Queen Victoria Museum and Art Gallery, Inveresk, Tasmania

-Tasmanian Museum and Art Gallery, Hobart, Tasmania

-Other groups and individuals

The Department is extremely grateful to the many organisations and individuals who provided expert advice and information on numerous draft distributions.

Please feel free to provide feedback via the Contact Us page.

© Commonwealth of Australia Department of the Environment GPO Box 787 Canberra ACT 2601 Australia +61 2 6274 1111