

20 December 2017

Melanie Stutchbury Senior Project Officer Fire & Rescue NSW 1 Amarina Ave Greenacre NSW 2190 Our ref:

21/25583 221175

Your ref:

Dear Melanie

Deniliquin Training Facility PFAS Management Options Assessment

1 Introduction

Fire and Rescue NSW (FRNSW) engaged GHD Pty Ltd (GHD) to undertake a management options assessment (MOA) for the FRNSW Deniliquin site, located at Macknight Drive, Deniliquin, NSW 2710 (the site). The MOA was required to provide a discussion document for a remediation workshop to be held in Sydney in January 2018.

The MOA was in response to identified contamination from per- and poly-fluorinated alkyl substances (PFAS) which were derived from the former use of specific aqueous film forming foams (AFFF) at the site.

2 Purpose

The purpose of this report is to provide FRNSW with an understanding of the potential management options to address onsite and offsite contamination of soil, groundwater and surface water.

The document first summarises the site setting and constraints, potential remedial/management options and then some suggested management scenarios for discussion. Approximate, ball park costs for aspects of the remediation are included for the purpose of preliminary budget planning. Owing to the nature of this emerging issue, management options and remedial technologies are continually under review and the costs provided in this report should be treated as provisional items for the purpose of budget estimates only.

3 Approach

The approach used to develop the MOA comprised:

- Assessment of the results of previous investigations at the site;
- A data gap analysis to identify where further data might be needed;
- A qualitative risk assessment to inform the level of remediation required;
- Assessment of the volumes and extents of contamination;

- A remediation options assessment to select the most suitable remedial and/or management technology to address the contamination issues;
- Selection of remediation and or management options for discussion.

3.1 Previous analytical results

A preliminary site investigation (PSI) was undertaken by GHD in 2016 to identify potential sources of contamination and areas of potential concern and develop a sampling and analytical plan for further intrusive investigations on the site. The findings of the PSI are reported in:

• GHD (2016) Deniliquin PFAS Investigation, Preliminary Site Investigation and Sampling and Analysis Quality Plan. August 2016.

Following the PSI, an environmental site assessment (ESA) was undertaken by GHD in 2016. The aim of the investigation was to characterised impacts from PFAS on the site and the surrounding environment. The findings of the ESA are reported in:

GHD (2017a) Fire & Rescue NSW, Deniliquin Training Facility, Environmental Site Assessment.
 March 2017.

A further ESA was undertaken in May 2017. The findings of the May 2017 ESA are reported in:

 GHD (2017b) Fire & Rescue NSW, Deniliquin Training Facility, Phase 2 Environmental Site Assessment - PFAS. October 2017.

The key findings of the two ESAs are summarised as follows:

- All soil results were below the nominated screening criteria for human health under a commercial / industrial land use scenario. The highest concentration of PFAS was reported in soil sample collected from SB02 on the asphalt in the fire training area (total PFAS 15.7 mg/kg). Generally the concentration of PFAS was higher in the surface samples and at least one order of magnitude lower at depth. Some of the results exceeded ecological guidelines.
- All sediment locations reported detectable concentrations of PFAS. The highest concentrations
 reported for PFOS in sediments were reported onsite. The maximum concentrations reported for
 PFOS and PFOA in sediments were 0.504 mg/kg and 0.0062 mg/kg, respectively, both at SS02,
 onsite. The concentration of PFAS (sum of total) was noted to be an order of magnitude greater in
 samples collected from on-site monitoring locations compared to off-site. There were no
 exceedances of the adopted human health assessment criteria (OEH/NSW Health, 2017
 commercial/industrial land use) but some results exceeded ecological guidelines both onsite and
 offsite.
- Depth to groundwater ranged from approximately 10 to 12 mTOC. Local groundwater flow was interpreted to be in a north to north-easterly direction.
- PFAS exceeded drinking water guidelines in two wells onsite and recreational guidelines in one well onsite. One well onsite also exceeded the freshwater ecological guideline.

- Surface water samples exceeded drinking water guidelines in offsite drainage channels to the north
 and east of the site. One surface water sample exceeded the recreational guideline and three offsite
 samples exceeded the ecological freshwater guideline. PFAS was not detected in Mulwala Canal.
- The maximum PFAS (sum of total) concentration was at SW03 (duplicate sample, 2.46 ug/L), collected from the dam located on private property approximately 300 metres north of the site boundary.

3.2 Site setting and constraints

The main features of the Deniliquin site setting and their relevance to determining appropriate management options are provided in Table 1

Table 1 Site setting and contaminant issues

Aspect	Summary	Issues
Site location	Approximately 2.8 km west to the nearest major natural surface waterbody – Edwards River.	Located some distance from the nearest natural receptor. Mulwala Canal is located between the site and the Edwards River which might influence groundwater flows in the area and may prevent groundwater from the site discharging into the River.
Geology and hydrogeology	Quaternary porous sediment aquifer - Shepparton Formation. Groundwater flow is likely to be towards the east and north in the area off the site. However, the Deniliquin Hydrogeological map indicated a generally westerly groundwater flow in the shallow aquifer which might suggest the Edward River is generally a losing river and flow is more dominant towards the Murray River to the west. Groundwater salinity indicated fresh to slightly brackish conditions. A large number of water supply wells were identified at a distance of greater than 1.7 km to the east of the site near to Edward River which are screened within slightly deeper units of the Shepparton Formation. A number of water supply wells screened in the Shepparton Formation are also located to the west at distances of greater than 2 km	Low salinity means PFAS solubility would not be significantly reduced. Groundwater use in the immediate rea would likely not be impacted by contaminants from the site based on the current location of extraction bores.

Aspect	Summary	Issues
Hydrology	It is understood that stormwater from the site was originally diverted to an unlined drain that ran approximately eastwards towards Edward River. At some point, stormwater has been diverted to the north of the site to an off-site dam approximately	Stormwater originating from the site is not expected to travel to either the Edward River or Mulwala Channel. Water that does not reach the offsite dam is likely to seep into the ground.
	150 m from the site	Surface water may be the main means of PFAS mass migration offsite.
Contaminants of concern	PFAS – notably PFOS, PFHxS, PFOA. Identified in soil, sediment, groundwater and surface water onsite and offsite. Water soluble, can sorb to soil and sediments,	The physico-chemical characteristics of PFAS make these chemicals very hard to remove from the environment and to destroy.
	leachable, resistant to degradation, possibly toxic to animals and humans, bioaccumulate in the food chain, long half-lives in humans and high adverse profile in the media.	PFAS has been released to the environment and therefore plants, animals and human have the potential to become exposed to PFAS.
		PFOS_PFHXS exceed screening criteria in surface water and groundwater.
		PFAS have received very negative reporting in the media and have a high perception of risk to the community.
Contaminant sources	AFFF products containing PFAS are no longer used on the site so no primary sources exist. Secondary sources of PFAS contamination include the onsite soils, sediments and groundwater.	The site, therefore, remains a potential source of PFAS contamination to offsite receptors. PFAS impact has been established in the offsite dam to the north of the
	An offsite dam to the north of the site contains elevated PFAS. This appears to be fed by the drains leaving the site.	site. The northern industrial site may be another potential source of PFAS.
	An industrial facility approximately 300m north of the site contains a wheel wash bay which could potentially have used detergents with PFAS. There is PFAS contamination in sediment and surface water approximately 20m south of the boundary.	The dam provides a potential source of impact to any grazing animals and other organisms that might exploit the water.

Aspect	Summary	Issues	
Contaminant fate and transport	PFAS can leach from soil into groundwater and migrate offsite. PFAS can migrate offsite in drains. PFAS may partition to sediments upon contact with more saline surface water. Dissolved PFAS can be taken up by plants. Smaller PFAS	PFAS can migrate considerable distances in groundwater although this does not appear to be the case at the site as downgradient groundwater wells onsite did not contain detectable PFAS.	
	molecules are more soluble and less able to sorb to organic material than larger molecules.	It is likely to migrate along drainage channels originating from the site. PFAS in the drains could leach into groundwater from the drains. The PFAS in soils, drains and surface water is available to terrestrial organisms.	
Regulatory constraints	Currently no accepted waste disposal criteria for PFAS	Offsite disposal to a landfill is not a currently available option. Offsite	
	Screening criteria for ecological receptors tend to be very low. The criteria protective of human consumption of impacted biota is generally below laboratory LORs.	disposal to a treatment facility is a potential option	
Remedial constraints	PFAS can be destroyed thermally but at very high temperatures i.e. >1400°C. Many other technologies have been tested at bench scale but not full scale.	Remedial methods are not well established and may be cost-prohibitive if volumes of water and/or soil are large. Options are discussed	
	There are method that can remove PFAS from water including filtration methods and reverse osmosis.	further in Section 5.	

3.3 Summary

The information presented above indicated that the site is a likely source of offsite PFAS contamination, notably in surface drains.

4 Management drivers

Based on the limited data set, there appears to be a risk to offsite ecological receptors through exposure to surface water and drain sediments. The presence of PFAS in offsite media also poses a potential reputational risk for FRNSW.

GHD concludes that:

- Impacted PFAS sources include the site's soils, sediments and surface water and the drains and dams offsite.
- The extent of soil contamination may be relatively limited. Groundwater contamination appears limited in extent and largely retained onsite. Offsite groundwater maybe impacted through infiltration of PFAS from drains rather than large scale migration.

- The main driver for management is the immediate prevention of any further migration of PFAS from onsite sources to the offsite environment.
- Addressing the main sources of PFAS contamination onsite (sediments and surface water) and offsite (northern dam) should be a priority to achieve this outcome.
- Soil and groundwater contamination remediation need not be addressed at this stage as their
 impacts to offsite receptors is considered negligible. However, a more systematic soil assessment
 across the site is recommended. In case the regulatory authority require more active remediation of
 these media, a contingency approach has been included in Section 5.4.

5 Management options approach

The options discussed below do not necessarily address all contamination but rather provide a means of mitigating further impact through a combination of source reduction and isolation of the contamination.

Management options discussed below are subject to further site investigations.

The main approaches are:

- PFAS mass reduction through destruction, isolation or removal; or
- Control of migration through interception or isolation; or
- A combination of the two.

5.1 Soil

It is likely that PFAS contamination in soil is present over most of the site, albeit a low concentrations. The PFAS onsite does not represent a significant risk to human health based on a commercial/industrial setting however the mass of PFAS acts as a potential ongoing source of contamination to groundwater and surface drains. Therefore, physical removal of all this soil is not considered a practicable immediate response or commensurate with the risks posed by the soil.

Potential management options for the site's soils include:

- Maintenance of any hardstand area to restrict rainwater access to the subsoil and to prevent runoff from impacted hardstand. This might involve resealing or further capping with concrete of asphalt.
 This would reduce the impact risk of mass migration to the groundwater.
- Targeted excavation of the soils with the highest PFAS concentrations followed by either:
 - Offsite disposal to a licenced facility for destruction
 - Onsite encapsulation in an engineered facility
 - Onsite treatment with a stabilising agent.

5.2 Groundwater

Groundwater PFAS extent appears largely confined to the site and immediate surrounds.

Remediation of groundwater impacted by PFAS is considered impractical due to the lack of proven, economically viable methods, the relatively limited extent of the PFAS plume, the lack of groundwater use in the immediate area and the lack of threat from groundwater to any aquatic ecosystems. The risks posed by the groundwater PFAS are considered lower than that from the surface water. Consequently, an immediate management response to groundwater contamination is considered a lower priority than management of surface water impacts.

Other options for dealing with the risks of groundwater contamination include:

- Institutional restrictions of groundwater extraction e.g. groundwater extraction prohibitions. Such
 approaches would require approval and implementation by the relevant authorities and may not be
 greeted favourably by local community. However, these approaches have been successfully
 implemented in other areas subject to groundwater contamination from a range of sources and
 would require community consultation and active stakeholder engagement.
- Source migration reduction through capping of soils and isolation/removal of surface water and sediment sources.
- Groundwater monitoring plan to include triggers that indicate when the risk profile changes and contingencies should triggers be exceeded.

5.3 Surface water and sediments

The concentrations of PFAS in surface water and drains do not suggest an immediate risk to human or ecological receptors onsite. Given this, GHD believe there is no need for any remedial work onsite at this stage. However, as the sediment and surface water can potentially migrate offsite, it is recommended that consideration be given to decommissioning the existing drains and construction of new concrete-lined drains with sediment traps, combined with the improvement of hardstand across the site as discussed above.

Consideration should be given to remediation of the sediment and surface water from the offsite northern dam as discussed below. However, this should not occur until it has been isolated from any further contamination from onsite sources.

5.3.1 Surface water

Options for management of surface water in the offsite dam include:

• Removal of water from the northern dam offsite followed by treatment of the water by a remediation contractor or tanking of water to an offsite waste treatment facility.

5.3.2 Sediment

Addressing of the sediments in the offsite dam require the initial removal and treatment of the surface water (see above). The main management options for sediment include:

- Offsite disposal to:
 - A licenced NSW landfill The NSW EPA waste guidelines provide classification criteria for PFAS-impacted soils. However, this option would require agreement from the receiving landfill.

- Disposal to a licenced facility in Queensland for destruction
- Onsite retention of the sediment, either by:
 - encapsulation in an engineered facility. The facility would be designed to resist erosion, direct rainwater away and prevent leaching of water through the sediment; or
 - treatment and reuse or disposal. The sediment would need to be assessed for acid sulphate potential and its engineering properties if it is to be reused on site.

An indicative cost estimate is provided for offsite disposal and onsite encapsulation. Treatment and reuse would be subject to approval by the EPA, the engineering characteristics of the soil and suitable reuse areas being available. However, this does not remove the mass from the site and would not remove the potential for leaching of PFAS from the reused soils. Therefore a cost estimate is not provided at this stage.

5.4 Contingencies

While GHD recommends the remediation of the site surface water and sediments, it is possible that the regulatory authority may require more intrusive approach to other contaminated media. For this reason, GHD have conducted a remediation options assessment (ROA) for soil and groundwater.

The ROA considers broad general response actions which are categories of actions for accomplishing remedial objectives and can be combined to form remedial alternatives. These are:

- · No Action (rejected).
- Institutional controls.
- · Containment.
- Removal.
- In-situ treatment.
- Ex-situ Treatment.

The assessment first considered a large number of remedial options and reviewed them in terms of their likely or proven efficacy for addressing PFAS. This results is short list of methods for further consideration. The options retained for further consideration and discussion in the workshop are listed in Tables 2 and 3.

 Table 2
 Soil management options

General Response Actions	Remedial Technology	Process Options	Descriptions	Treated compounds	Limitations	Effectiveness	Implementability
Containment	Capping	Clay Cap	Compacted clay placed over the impacted area. Clay should be covered by at least 0.5m of silty sand or sandy soil to maintain the integrity of the clay cap (i.e., to protect it from root penetration).	Prevents mobilisation of PFAS compounds by infiltration of surface waters	May require a large volume of imported soil in excess of the volume of contaminated soil. This may be sourced from on-site. Would require an Environmental Management Plan (EMP) to ensure ongoing effectiveness. Legacy issue retained.	The compacted clay liners are effective if they retain a certain moisture content but are susceptible to cracking if the clay material is desiccated. They do not prevent rising groundwater levels from contacting the impacted soils and dissolving contaminants.	Good
		Asphalt or Concrete Cap	Paving grade asphalt or concrete placed over the prepared impacted area. Fill settlement must be evaluated in considering a concrete cap design. Sprayed asphalt needs to be covered with soil or opaque reflective paint to protect the asphalt from ultraviolet light and retard oxidation.	Prevents mobilization of PFAS compounds by infiltration of surface waters	May require a large area of asphalt or concrete. Would not prevent rising groundwater levels from contacting the impacted soils. Would require an EMP to ensure ongoing effectiveness. Legacy issue retained.	Effective if maintained well. Susceptible to deformation in constant wetting and drying conditions. They do not prevent rising groundwater levels from contacting the impacted soils. Would require an EMP to ensure ongoing effectiveness.	Good
Removal	Excavation (to the extent practicable)	Excavation with on-site treatment	Excavation of impacted solids using standard construction equipment (i.e. backhoes, bulldozers, and front-end loaders). Soils are treated to reduce contaminant concentrations or to stabilise compounds against future leaching. Soil are analysed for suitability for re-use on site.	Excavation is applicable to the PFAS compounds. Treatment methods require further assessment	Treatment methods may be expensive and many are unproven. Disposal of treatment end products may be problematic.	Dependent on the technology used. Mixing with binding agents has been shown to be effective in full scale operations. Refer to insitu and Ex situ treatment methods below.	Could be implemented assuming there is sufficient suitable area for treatment and an effective method for treatment is provided. Treatment can be conducted over a timeframe suitable to F&RNSW
		Excavation with on-site encapsulation	Excavated soils are placed in a purpose-built engineered retention facility to prevent access to the soils from human activity and the elements, notably infiltration, leaching and run-off.	Excavation is applicable to the PFAS compounds	Potential significant regulatory and technical problems with implementation. The regulatory process could be lengthy and involved. Legacy issue retained.	Effectiveness is dependent on the design and maintenance of the facility. It does not remove the liability from the site but should break the source-receptor pathway.	Could be implemented assuming there is sufficient suitable area for treatment and there is regulatory acceptance. Volumes of soil cannot be predicted at this stage.
		Excavation with temporary on- site stockpiling	Excavated soils are placed in purpose-built stockpiles to prevent access to the soils from human activity and the elements, notably infiltration, leaching and run-off. Storage would be temporary to allow for removal of source and planning for treatment at a later date.	Excavation is applicable to the PFAS compounds	Fugitive emissions such as dust and particulates are often a problem during operations. Stockpile facility would need to be weather-proof and allow no leaching to soils and groundwater.	Effective in removing PFAS mass from teh environment and from potentially contributing more PFAS to groundwater and surface water. Effectiveness is dependent on the design and maintenance of the stockpiles. It does not remove the liability from the site but allows F&RNSW more time to consider budgetary requirements in their remediation planning i.e. spreading the cost of remediation over a longer time period.	Could be implemented assuming there is sufficient suitable area for stockpiling.

General Response Actions	Remedial Technology	Process Options	Descriptions	Treated compounds	Limitations	Effectiveness	Implementability
Ex Situ Treatment (assumes excavation)	Biological	Phytoremediation	Use of plants and their associated rhizospheric microorganisms to remove, transfer, stabilise, and/or destroy contaminants in soil or groundwater.	There is currently no literature on the effectiveness of Phytoremediation on PFAS compounds however uptake by plants in dissolved form is feasible and this may be effective in removing PFAS from excavated soils.	A treatment area would be required for this process which might impinge on site activities. Plant material would then have to be harvested and require disposal.	Unknown but theoretically possible based on PFAS solubility. With excavated soils, the access by plant roots could potentially be achieved. The presence of a gum plantation next to the site and the lack of PFAS in groundwater downgradient from this plantation may mean the trees have taken PFAS up from the groundwater. This needs further assessment and research to confirm this observation and assess its effectiveness.	While there is insufficient information to prove its effectiveness, theoretically it may be a viable option to address soils on site.
	Physical- Chemical Treatment	Soil Washing	Water-based process for washing soils to remove contaminants. The process involves either dissolving or suspending the contaminants in solution. The contaminated water from the washing is then treated and treated soil replaced in the excavation	PFAS compounds likely to be amenable to flushing/washing	May require several washing events. Water treatment system would be required.	Effectiveness would need to be assessed by pilot testing to assess the concentration of treated soil against remediation criteria.	Requires a custom-built plant unless a suitable hire plant is available. May be costly and would depend on the volume of soil requiring treatment. Likely to be more economical with larger soil volumes.
		Solidification/Stabilisation/Sorp tion	Contaminants are immobilised by sorption, precipitation or incorporation into crystal lattices or physically encapsulation by the addition of suitable reagent or concrete. The process is designed to reduce leaching potential and to improve soil condition.	Sorption of PFAS compounds on to various substrates have been assessed in the literature and been shown to have some benefit. Some proprietary products have been tested in the lab and at full scale. Soils may be encapsulated in cement.	Mixtures of contaminants may make formulation of a single process difficult. Doesn't destroy or remove contaminants. Long term effects are difficult to predict and long-term management may be required.	Full scale stabilisation projects has been documented in Australia. Site-specific testing of the material would be required to assess effectiveness.	Requires some bench testing or pilot trials to optimise mixtures and pre-treatments requirements. Relatively short remedial timeframe.
		Effluent treatment (assumes soil washing)	The process may be modified to treat effluent from soil washing to more effectively remove PFAS from the soil rather than simply immobilising it.	PFAS compounds specifically.	Would depend on the ability of the soil washing process to remove PFAS from the soil. This might be limited by the soil properties i.e. grain size, pH. There is little information of throughputs of large scale processes required.	CRC-Care literature indicated two successful waste water treatment projects involving treatment of 200,000L of waste water.	Likely to be implementable. Commercial organisations and CRC Care have developed treatment systems. Would likely require removal of colloidal material from the waste water stream to be effective.

General Response Actions	Remedial Technology	Process Options	Descriptions	Treated compounds	Limitations	Effectiveness	Implementability
		Incineration	High temperatures, 1,200 °C+, are used to combust (in the presence of oxygen) organic constituents in hazardous wastes. Plasma arc technology can also create sufficient heat to destroy PFAS	Literature indicates high temperature incineration is beneficial for PFAS destruction.	Significant energy requirements and potential to generate GHGs. Incomplete combustion may create additional contaminants of concern e.g fluorine. Disposal of solid residues may be problematic as they may concentrate other inorganic compounds. Probably not a mobile option and soil would need to be delivered to a licenced facility.	Effective. Literature indicated PFAS compounds can be incinerated at temperatures of 1200°C. ToxFree facility in Queensland has conducted such work and achieve over 99% destruction.	Good - Would require off site disposal of soils to a licenced facility but these do exist.

 Table 3
 Groundwater management options

General Response Actions	Remedial Technology	Process Options	Descriptions	Treated compounds	Limitations	Effectiveness	Implementability
Containment	Hydraulic Barriers	Vertical Wells	Conventional groundwater extraction is pumping in vertical wells. Other extraction device include vacuum enhanced recovery, jet-pumping systems, etc.	Well technology is applicable to the PFAS	Limited by the effective capture zone of each well. Careful hydrogeological assessment and pilot trials would be needed to assess effective radius of influence and pumping rates. Volumes of water produced requiring treatment might be excessive and need treatment - the rate of treatment would need to match or exceed the rate of extraction.	Widely used and demonstrated effectiveness. Generally effective for hydraulic containment (i.e. horizontal migration) and ineffective for groundwater restoration.	Good. Common technology; often combined with other treatment technologies applied to the extracted groundwater in an integrated system.
		Interception Trenching	Trenches backfilled with granular material provide preferred flow path for collection in pipe or sump. Groundwater collection technique to increase production rate from low permeability areas.	Method allows for capture of impacted groundwater rather than actual treatment. The treatment would occur ex-situ. (However, should the technology exists, reactive material could be included in the trench to treat the groundwater in situ).	Depth of PFAS impact not well known. Large volumes of water likely to be produced which requires treatment.	Widely used and demonstrated effectiveness.	Good. Groundwater is shallow.
In Situ Treatment	Chemical	Chemical Oxidation	Aqueous injection of oxidizing agents (activated persulphate, Fentons) to promote abiotic in situ oxidation of PFAS	Some literature suggests this might be an effective method of PFAS destruction assuming site-specific trials are conducted.	Unproductive oxidant consumption by natural media. Application involves injection of aqueous phase reagents will be significantly constrained in low permeability media. OH&S issues associated with handling oxidants.	Theoretically effective, but requires good contact between contaminant and reagent. Aquifer heterogeneity not clearly understood but could make uniform distribution difficult and would limit effectiveness.	Relatively easy to implement. Deployment could be through wells, trenches or infiltration basins.
	Biological	Phytoremediation	Phytoremediation is a set of processes that uses plants to remove, transfer, stabilise and destroy organic/inorganic contamination in ground water, surface water, and leachate. These mechanisms include enhanced rhizosphere biodegradation, hydraulic control, phytodegradation and phytovolatilization.	No literature on this process and its effectiveness on treating AFFF.	Toxicity and bioavailability of biodegradation products is not always known. Degradation by-products may be mobilised in groundwater or bioaccumulated in animals. More research is needed to determine the fate of various compounds in the plant metabolic cycle. Disposal of harvested plants can be a problem if they contain high levels of heavy metals. Climatic or seasonal conditions may interfere or inhibit plant growth, slow remediation efforts, or increase the length of the treatment period. It can transfer contamination across media, e.g., from soil to air. Phytoremediation will likely require a large surface area of land for remediation. Phytoremediation for extraction or degradation is generally limited to relatively shallow depths of root penetration.	PFAS has been shown to be present in plants and therefore, uptake of dissolved PFAS by plants may be effective as long as the root systems are deep enough. This might require larger plant species (e.g. eucalypts)	Most applicable for control of shallow groundwater plumes. High concentrations of hazardous materials can be toxic to plants but this may not be the case with PFAS. It is still in the demonstration stage. Pumping the water out of the ground and using it to irrigate plantations of trees may treat contaminated groundwater that is too deep to be reached by plant roots however this may only serve to increase the area of impact. High rainfall may flush the contaminants back into groundwater.

General Response Actions	Remedial Technology	Process Options	Descriptions	Treated compounds	Limitations	Effectiveness	Implementability
Ex Situ Treatment (assumes extraction)	Chemical	Chemical Oxidation	Oxidizing agents are used to destroy organic contaminants in an ex situ storage area Potential oxidizing agents are activated persulphate and Fentons Reagent.	Some literature information on the potential effectiveness of this method on PFAS.	Lack of full scale examples. Would require site-specific trials. Heterogeneity of the aquifer is not understood.	Lack of full scale examples. Would require site-specific trials.	Lack of full scale examples. Would require site-specific trials.
		Precipitation	This process transforms dissolved compounds into an insoluble solid, facilitating the compound's subsequent removal from the liquid phase by sedimentation or filtration. The process usually uses pH adjustment, addition of a chemical precipitant and flocculation. It is used as a pretreatment process with other technologies (such as chemical oxidation or air stripping), where the presence of metals would interfere with treatment.	No literature on this method applied to PFAS. However PFOS has a tendency to partition to sediments in waters with high salinity. Increasing the salinity of the water may remove it from the water stream allowing for marine disposal of the effluent water. Impacted sediments would then need treatment and disposal.	Untested method.	Unproven effectiveness but theoretically could be an effective method of removing PFOS from a waste water stream.	Unproven
	Physical Treatment	Granular activated Carbon (GAC) Adsorption	GAC adsorption is a full-scale technology in which ground water is pumped through one or more vessels containing activated carbon to which dissolved organic contaminants adsorb. GAC is incinerated at the end of its life.	Applicable to PFAS	Streams with high suspended solids (> 50 mg/L) and oil and grease (> 10 mg/L) may cause fouling of the carbon and may require frequent treatment. Unknown sorption capacity or site-specific data. GAC becomes a waste source that needs destruction.	The technology has some efficacy for addressing PFAS according to literature although not every one agrees. Work conducted by GHD has shown it to be effective in achieving guideline criteria for drinking water and trade waste disposal for low turbidity waters. Contaminant removal efficiencies need to be further assessed.	Carbon adsorption systems can be deployed rapidly. Would need a site-specific design
		CRC Care Method	Uses modified clay as an adsorption media for PFAS. Water is initially stripped of colloidal content and then passed through a number of chambers to remove the PFAS from the water. Clay media is collected by CRC for disposal.	PFAS specifically	May be limited by required throughput. CRC quote 4L per hour which may not be adequate for groundwater remediation. However this rate may be increased if water is colloid free.	Apparently successful in treating waste water according to CRC literature	Apparently implementable according to CRC literature
		Reverse osmosis	Impacted water is forced through a membrane or series of membranes to remove water from dissolved phases	Has been demonstrated in Queensland to be effective on removing PFAS from waste	Expensive technology and high energy consumer.	Experience from Queensland water treatment facility showed it removed 100% of PFAS from impacted water.	RO systems can be deployed rapidly. Would need a site-specific design
Disposal	Extraction	Reinjection	Reinjection of groundwater to the aquifer upgradient or side-gradient to the impacted area.	PFAS	Limited by the capacity of the aquifer to receive the groundwater.	Could create enhanced gradients which would mobilise contamination	Relatively easy to implement

6 Indicative cost estimates

The available contamination data provided a certain level of understanding of the site, however, there are a number of uncertainties or data gaps remaining. The uncertainty can only be further reduced by further assessment work. Consequently, a number of assumptions have to be made which utilise information gained from comparable sites where some data is available and based on our experience with similar sites. In addition, some inputs for developing the indicative cost estimates are from Rawlinsons, *Australian Construction Handbook, Edition 35, 2017.*

Recognising that there is risk of cost exceedance, suitably robust contingencies have been to be applied to these costs for any budgeting or other financial purposes. The costs, contingencies and sundries should be ratified by a suitably qualified cost estimator and preferably market tested, should greater certainty be required.

GHD have provided indicative surface water and sediment volumes based on the surface area of the dam.

- The estimated surface water volume for the offsite northern dam is approximately 200,000 L, assuming a dam length of 20 m, width of 5 m and depth of 2 m. this would vary significantly in dry or wet periods.
- Sediment within the retention pond is estimated to be in the order of **100 m**³ based on pond surface area of 100 m² and an assumed thickness of 1 m.

6.1 Water

GHD has obtained quotes from a remedial contractor for the treatment of the surface water based on rate per litre basis. Based on the assumed volume, the indicative cost estimate to treat the water in the offsite dam is in the order of **\$.** This figure excludes discharge and sediment management.

The price included:

- · Removal of waters from the primary dam
- Process the waters through the mobile PFAS treatment system
- · Discharge treated water into temporary storage tanks
- Sampling, analysis and validation of the waters to satisfy the discharge criteria (at present the discharge criteria has not been established)

According to the contractor, the end result of the treatment would be discharge of the treated water or use for irrigation. It is not clear from the contractor's quote what criteria this is based on or whether this is a valid assumption. GHD makes no assertion that their methodology will achieve regulatory approval for discharge or irrigation, but provide the quote for indicative costing purposes. This would need to be further assessed prior to implementation.

6.2 Sediment

6.2.1 Offsite disposal to landfill

This option is subject to landfill acceptance of the sediment. It is likely that they would not receive sludge and the sediment is therefore likely to require dewatering.

The indicative cost estimate to dispose of 100 m³ of dry sediment offsite is in the order of \$.

This estimate includes allowances for excavation, transport, plant hire and landfill waste levy.

The benefits of this method (assuming landfill acceptance) is that it permanently removes PFAS mass from the site.

6.2.2 Onsite encapsulation

GHD have used a proprietary spreadsheet to calculate the cost for construction of an engineered soil repository to contain the sediments, indefinitely. The indicative cost estimate to construct the facility for 100 m³ of sediment is in the order of \$.

Additional costs would be incurred for excavation and haulage of the sediment to the facility and compaction. Such costs may be in the order of \$.

This indicative cost estimate is based on:

- Design
- Cell construction with geosynthetic lining, clay capping, leachate collection and sump, set out, stormwater management.
- 20% contingency.

Such a facility would require ongoing maintenance and monitoring and the PFAS mass will remain on site indefinitely. This would incur additional costs. However, if the landfill will not receive the sediment, this may be the only response to PFAS mass isolation.

6.2.3 Exclusions

The indicative cost estimates provided above excludes a number of items including:

- Planning approval
- Auditing
- · Validation sampling
- · Quality control or verification inspections
- Gas venting systems
- · Dewatering of sediments

7 Summary

Indicative cost estimates for the water and sediment management for the offsite dam are summarised in Table 4.

Table 4 Indicative management cost estimates for offsite dam

Media	Method	Indicative cost estimate
Water	Treatment and discharge	\$
Sediment	Offsite disposal	\$
	Onsite encapsulation	 \$

8 Limitations

This report has been prepared by GHD for FRNSW and may only be used and relied on by FRNSW for the purpose agreed between GHD and the FRNSW as set out in Section 1.2 of this report.

GHD otherwise disclaims responsibility to any person other than FRNSW arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described throughout this report. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by FRNSW and others who provided information to GHD, which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

GHD has prepared the indicative management cost estimates set out in Section 6 of this report ("Indicative Cost Estimate") using information reasonably available to the GHD employee(s) who prepared this report; and based on assumptions and judgments made by GHD.

The Indicative Cost Estimate has been prepared for the purpose of providing FRNSW with estimates for internal FRNSW use only and must not be used for any other purpose.

The Indicative Cost Estimate is a preliminary estimate only. Actual prices, costs and other variables may be different to those used to prepare the Indicative Cost Estimate and may change. Unless as otherwise specified in this report, no detailed quotation has been obtained for actions identified in this report. GHD does not represent, warrant or guarantee that the works can or will be undertaken at a cost which is the same or less than the Indicative Cost Estimate.

Where estimates of potential costs are provided with an indicated level of confidence, notwithstanding the conservatism of the level of confidence selected as the planning level, there remains a chance that

the cost will be greater than the planning estimate, and any funding would not be adequate. The confidence level considered to be most appropriate for planning purposes will vary depending on the conservatism of the user and the nature of the project. The user should therefore select appropriate confidence levels to suit their particular risk profile.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this Report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

Sincerely

Jacqui Hallchurch

Mallehinh

Principal Environmental Scientist 02 9239 7046

Mark Clough

Principal Environmental Scientist 03 8687 8585

M.OA